0
0
mirror of https://github.com/edk2-porting/edk2-msm synced 2024-05-16 15:39:31 +00:00

Standarized code styles (clang-format)

This commit is contained in:
Gustave Monce 2021-12-03 17:28:30 +01:00 committed by BigfootACA
parent ebe85dc0f2
commit aee5d4edfa
40 changed files with 4756 additions and 5205 deletions

17
.clang-format Normal file
View File

@ -0,0 +1,17 @@
Language: Cpp
BreakBeforeBraces: Stroustrup
PointerAlignment: Right
IndentWidth: 2
AccessModifierOffset: 0
ColumnLimit: 80
NamespaceIndentation: All
AlignTrailingComments: true
AllowAllParametersOfDeclarationOnNextLine: true
AlwaysBreakTemplateDeclarations: true
AlignAfterOpenBracket: AlwaysBreak
UseTab: Never
IncludeBlocks: Preserve
AlignConsecutiveDeclarations: true
AlignConsecutiveAssignments: true
SpacesInParentheses: false
SpaceBeforeParens: ControlStatements

View File

@ -16,27 +16,26 @@
* along with this program. If not, see <https://www.gnu.org/licenses/
*/
#include <Library/UefiApplicationEntryPoint.h>
#include <Library/BootSlotLib.h>
#include <Library/UefiApplicationEntryPoint.h>
EFI_STATUS
EFIAPI
SwitchSlotsAppEntryPoint (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
SwitchSlotsAppEntryPoint(
IN EFI_HANDLE ImageHandle, IN EFI_SYSTEM_TABLE *SystemTable)
{
MemCardType Type = CheckRootDeviceType();
if (Type == UNKNOWN) {
PrintAndWaitAnyKey(SystemTable, L"Unknown device storage. Press any key to exit.\n");
PrintAndWaitAnyKey(
SystemTable, L"Unknown device storage. Press any key to exit.\n");
return EFI_UNSUPPORTED;
}
EFI_STATUS Status = EnumeratePartitions();
if (EFI_ERROR (Status)) {
Print (L"Could not enumerate partitions. Code %d\n", Status);
if (EFI_ERROR(Status)) {
Print(L"Could not enumerate partitions. Code %d\n", Status);
WaitAnyKey(SystemTable);
return Status;
}
@ -44,39 +43,46 @@ SwitchSlotsAppEntryPoint (
UpdatePartitionEntries();
/*Check for multislot boot support*/
BOOLEAN MultiSlotSupported = PartitionHasMultiSlot ((CONST CHAR16 *)L"boot");
BOOLEAN MultiSlotSupported = PartitionHasMultiSlot((CONST CHAR16 *)L"boot");
if (!MultiSlotSupported) {
PrintAndWaitAnyKey(SystemTable, L"A/B slots aren't supported on this device. Press any key to exit.\n");
PrintAndWaitAnyKey(
SystemTable,
L"A/B slots aren't supported on this device. Press any key to exit.\n");
return EFI_UNSUPPORTED;
}
Slot CurrentSlot = GetCurrentSlotSuffix();
if (IsSuffixEmpty(&CurrentSlot)) {
PrintAndWaitAnyKey(SystemTable, L"Current active slot not found, try to boot Android first. Press any key to exit.\n");
PrintAndWaitAnyKey(
SystemTable, L"Current active slot not found, try to boot Android "
L"first. Press any key to exit.\n");
return EFI_NOT_READY;
}
Slot *NewSlot = NULL;
Slot Slots[] = {{L"_a"}, {L"_b"}};
if (StrnCmp (CurrentSlot.Suffix, Slots[0].Suffix, StrLen (Slots[0].Suffix)) == 0) {
Slot Slots[] = {{L"_a"}, {L"_b"}};
if (StrnCmp(CurrentSlot.Suffix, Slots[0].Suffix, StrLen(Slots[0].Suffix)) ==
0) {
NewSlot = &Slots[1];
} else {
}
else {
NewSlot = &Slots[0];
}
//Print (L"Current active slot suffix is: %s, next slot suffix is: %s\n", &CurrentSlot.Suffix, &NewSlot->Suffix);
// Print (L"Current active slot suffix is: %s, next slot suffix is: %s\n",
// &CurrentSlot.Suffix, &NewSlot->Suffix);
Status = SetActiveSlot(NewSlot, TRUE, FALSE);
if (EFI_ERROR(Status)) {
Print (L"Could not update active slot. Code %d\n", Status);
Print(L"Could not update active slot. Code %d\n", Status);
WaitAnyKey(SystemTable);
return Status;
}
//Print (L"Current active slot has been updated successfully! Press any key to reboot.\n");
//WaitAnyKey(SystemTable);
gRT->ResetSystem (EfiResetWarm, EFI_SUCCESS, 0, NULL);
CpuDeadLoop ();
// Print (L"Current active slot has been updated successfully! Press any key
// to reboot.\n"); WaitAnyKey(SystemTable);
gRT->ResetSystem(EfiResetWarm, EFI_SUCCESS, 0, NULL);
CpuDeadLoop();
return EFI_SUCCESS;
}

View File

@ -16,35 +16,35 @@
* along with this program. If not, see <https://www.gnu.org/licenses/
*/
#include <Uefi.h>
#include <Library/UefiLib.h>
#include <Library/BootSlotLib.h>
#include <Library/UefiLib.h>
#include <Uefi.h>
EFI_STATUS
EFIAPI
BootSlotMain(
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
) {
EFI_STATUS
EFIAPI
BootSlotMain(IN EFI_HANDLE ImageHandle, IN EFI_SYSTEM_TABLE *SystemTable)
{
MemCardType Type = CheckRootDeviceType();
if (Type == UNKNOWN) {
DEBUG ((EFI_D_ERROR, "Device storage is not supported \n"));
DEBUG((EFI_D_ERROR, "Device storage is not supported \n"));
return EFI_SUCCESS;
}
EFI_STATUS Status = EnumeratePartitions();
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "Could not enumerate partitions. Code %d\n", Status));
if (EFI_ERROR(Status)) {
DEBUG((EFI_D_ERROR, "Could not enumerate partitions. Code %d\n", Status));
return Status;
}
UpdatePartitionEntries();
/*Check for multislot boot support*/
BOOLEAN MultiSlotSupported = PartitionHasMultiSlot ((CONST CHAR16 *)L"boot");
BOOLEAN MultiSlotSupported = PartitionHasMultiSlot((CONST CHAR16 *)L"boot");
if (!MultiSlotSupported) {
DEBUG ((EFI_D_ERROR, "A/B slots aren't supported on this device. Press any key to exit.\n"));
DEBUG((
EFI_D_ERROR,
"A/B slots aren't supported on this device. Press any key to exit.\n"));
return EFI_SUCCESS;
}
@ -52,22 +52,24 @@ BootSlotMain(
Slot CurrentSlot = GetCurrentSlotSuffix();
if (IsSuffixEmpty(&CurrentSlot)) {
CurrentSlot = Slots[0]; // Set A as active if there is no slot available (shouldn't happen though)
CurrentSlot = Slots[0]; // Set A as active if there is no slot available
// (shouldn't happen though)
}
// Clear all unbootable bits if exists
for (UINTN SlotIndex = 0; SlotIndex < ARRAY_SIZE (Slots); SlotIndex++) {
for (UINTN SlotIndex = 0; SlotIndex < ARRAY_SIZE(Slots); SlotIndex++) {
Slot *SlotEntry = &Slots[SlotIndex];
if (!IsSlotBootable(SlotEntry)) {
ClearUnbootable(SlotEntry);
}
}
// Set current slot as active again just refresh its attributes + mark it successful
// Set current slot as active again just refresh its attributes + mark it
// successful
Status = SetActiveSlot(&CurrentSlot, FALSE, TRUE);
if (EFI_ERROR(Status)) {
DEBUG ((EFI_D_ERROR, "Could not update active slot. Code %d\n", Status));
DEBUG((EFI_D_ERROR, "Could not update active slot. Code %d\n", Status));
return Status;
}

View File

@ -1,55 +1,45 @@
#include <PiDxe.h>
#include <Protocol/KeypadDevice.h>
#include <Library/DebugLib.h>
#include <Library/KeypadDeviceImplLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <PiDxe.h>
#include <Protocol/KeypadDevice.h>
typedef struct {
VENDOR_DEVICE_PATH Keypad;
EFI_DEVICE_PATH End;
VENDOR_DEVICE_PATH Keypad;
EFI_DEVICE_PATH End;
} KEYPAD_DEVICE_PATH;
KEYPAD_DEVICE_PATH mInternalDevicePath = {
{
{
HARDWARE_DEVICE_PATH,
HW_VENDOR_DP,
{
(UINT8)(sizeof(VENDOR_DEVICE_PATH)),
(UINT8)((sizeof(VENDOR_DEVICE_PATH)) >> 8),
},
{
HARDWARE_DEVICE_PATH,
HW_VENDOR_DP,
{
(UINT8)(sizeof(VENDOR_DEVICE_PATH)),
(UINT8)((sizeof(VENDOR_DEVICE_PATH)) >> 8),
},
},
EFI_CALLER_ID_GUID,
},
EFI_CALLER_ID_GUID,
},
{
END_DEVICE_PATH_TYPE,
END_ENTIRE_DEVICE_PATH_SUBTYPE,
{ sizeof (EFI_DEVICE_PATH_PROTOCOL), 0 }
}
};
{END_DEVICE_PATH_TYPE,
END_ENTIRE_DEVICE_PATH_SUBTYPE,
{sizeof(EFI_DEVICE_PATH_PROTOCOL), 0}}};
STATIC KEYPAD_DEVICE_PROTOCOL mInternalKeypadDevice = {
KeypadDeviceImplReset,
KeypadDeviceImplGetKeys,
KeypadDeviceImplReset,
KeypadDeviceImplGetKeys,
};
EFI_STATUS
EFIAPI
KeypadDeviceDxeInitialize (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
KeypadDeviceDxeInitialize(
IN EFI_HANDLE ImageHandle, IN EFI_SYSTEM_TABLE *SystemTable)
{
EFI_STATUS Status;
Status = gBS->InstallMultipleProtocolInterfaces(
&ImageHandle,
&gEFIDroidKeypadDeviceProtocolGuid,
&mInternalKeypadDevice,
&gEfiDevicePathProtocolGuid,
&mInternalDevicePath,
NULL
);
&ImageHandle, &gEFIDroidKeypadDeviceProtocolGuid, &mInternalKeypadDevice,
&gEfiDevicePathProtocolGuid, &mInternalDevicePath, NULL);
ASSERT_EFI_ERROR(Status);
return Status;

View File

@ -3,9 +3,9 @@
Copyright (c) 2006 - 2016, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
are licensed and made available under the terms and conditions of the BSD
License which accompanies this distribution. The full text of the license may
be found at http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
@ -58,12 +58,9 @@ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
EFI_STATUS
EFIAPI
KeypadComponentNameGetDriverName (
IN EFI_COMPONENT_NAME_PROTOCOL *This,
IN CHAR8 *Language,
OUT CHAR16 **DriverName
);
KeypadComponentNameGetDriverName(
IN EFI_COMPONENT_NAME_PROTOCOL *This, IN CHAR8 *Language,
OUT CHAR16 **DriverName);
/**
Retrieves a Unicode string that is the user readable name of the controller
@ -135,44 +132,30 @@ KeypadComponentNameGetDriverName (
**/
EFI_STATUS
EFIAPI
KeypadComponentNameGetControllerName (
IN EFI_COMPONENT_NAME_PROTOCOL *This,
IN EFI_HANDLE ControllerHandle,
IN EFI_HANDLE ChildHandle OPTIONAL,
IN CHAR8 *Language,
OUT CHAR16 **ControllerName
);
KeypadComponentNameGetControllerName(
IN EFI_COMPONENT_NAME_PROTOCOL *This, IN EFI_HANDLE ControllerHandle,
IN EFI_HANDLE ChildHandle OPTIONAL, IN CHAR8 *Language,
OUT CHAR16 **ControllerName);
//
// EFI Component Name Protocol
//
GLOBAL_REMOVE_IF_UNREFERENCED EFI_COMPONENT_NAME_PROTOCOL gKeypadComponentName = {
KeypadComponentNameGetDriverName,
KeypadComponentNameGetControllerName,
"eng"
};
GLOBAL_REMOVE_IF_UNREFERENCED EFI_COMPONENT_NAME_PROTOCOL gKeypadComponentName =
{KeypadComponentNameGetDriverName, KeypadComponentNameGetControllerName,
"eng"};
//
// EFI Component Name 2 Protocol
//
GLOBAL_REMOVE_IF_UNREFERENCED EFI_COMPONENT_NAME2_PROTOCOL gKeypadComponentName2 = {
(EFI_COMPONENT_NAME2_GET_DRIVER_NAME) KeypadComponentNameGetDriverName,
(EFI_COMPONENT_NAME2_GET_CONTROLLER_NAME) KeypadComponentNameGetControllerName,
"en"
};
GLOBAL_REMOVE_IF_UNREFERENCED EFI_COMPONENT_NAME2_PROTOCOL
gKeypadComponentName2 = {
(EFI_COMPONENT_NAME2_GET_DRIVER_NAME)KeypadComponentNameGetDriverName,
(EFI_COMPONENT_NAME2_GET_CONTROLLER_NAME)
KeypadComponentNameGetControllerName,
"en"};
GLOBAL_REMOVE_IF_UNREFERENCED EFI_UNICODE_STRING_TABLE mKeypadDriverNameTable[] = {
{
"eng;en",
L"Keypad Driver"
},
{
NULL,
NULL
}
};
GLOBAL_REMOVE_IF_UNREFERENCED EFI_UNICODE_STRING_TABLE
mKeypadDriverNameTable[] = {{"eng;en", L"Keypad Driver"}, {NULL, NULL}};
/**
Retrieves a Unicode string that is the user readable name of the driver.
@ -215,19 +198,13 @@ GLOBAL_REMOVE_IF_UNREFERENCED EFI_UNICODE_STRING_TABLE mKeypadDriverNameTable[]
**/
EFI_STATUS
EFIAPI
KeypadComponentNameGetDriverName (
IN EFI_COMPONENT_NAME_PROTOCOL *This,
IN CHAR8 *Language,
OUT CHAR16 **DriverName
)
KeypadComponentNameGetDriverName(
IN EFI_COMPONENT_NAME_PROTOCOL *This, IN CHAR8 *Language,
OUT CHAR16 **DriverName)
{
return LookupUnicodeString2 (
Language,
This->SupportedLanguages,
mKeypadDriverNameTable,
DriverName,
(BOOLEAN)(This == &gKeypadComponentName)
);
return LookupUnicodeString2(
Language, This->SupportedLanguages, mKeypadDriverNameTable, DriverName,
(BOOLEAN)(This == &gKeypadComponentName));
}
/**
@ -300,17 +277,14 @@ KeypadComponentNameGetDriverName (
**/
EFI_STATUS
EFIAPI
KeypadComponentNameGetControllerName (
IN EFI_COMPONENT_NAME_PROTOCOL *This,
IN EFI_HANDLE ControllerHandle,
IN EFI_HANDLE ChildHandle OPTIONAL,
IN CHAR8 *Language,
OUT CHAR16 **ControllerName
)
KeypadComponentNameGetControllerName(
IN EFI_COMPONENT_NAME_PROTOCOL *This, IN EFI_HANDLE ControllerHandle,
IN EFI_HANDLE ChildHandle OPTIONAL, IN CHAR8 *Language,
OUT CHAR16 **ControllerName)
{
EFI_STATUS Status;
EFI_SIMPLE_TEXT_INPUT_PROTOCOL *ConIn;
KEYPAD_CONSOLE_IN_DEV *ConsoleIn;
EFI_STATUS Status;
EFI_SIMPLE_TEXT_INPUT_PROTOCOL *ConIn;
KEYPAD_CONSOLE_IN_DEV * ConsoleIn;
//
// This is a device driver, so ChildHandle must be NULL.
//
@ -321,32 +295,26 @@ KeypadComponentNameGetControllerName (
//
// Check Controller's handle
//
Status = EfiTestManagedDevice (ControllerHandle, gKeypadControllerDriver.DriverBindingHandle, &gEFIDroidKeypadDeviceProtocolGuid);
if (EFI_ERROR (Status)) {
Status = EfiTestManagedDevice(
ControllerHandle, gKeypadControllerDriver.DriverBindingHandle,
&gEFIDroidKeypadDeviceProtocolGuid);
if (EFI_ERROR(Status)) {
return Status;
}
//
// Get the device context
//
Status = gBS->OpenProtocol (
ControllerHandle,
&gEfiSimpleTextInProtocolGuid,
(VOID **) &ConIn,
gKeypadControllerDriver.DriverBindingHandle,
ControllerHandle,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
Status = gBS->OpenProtocol(
ControllerHandle, &gEfiSimpleTextInProtocolGuid, (VOID **)&ConIn,
gKeypadControllerDriver.DriverBindingHandle, ControllerHandle,
EFI_OPEN_PROTOCOL_GET_PROTOCOL);
if (EFI_ERROR(Status)) {
return Status;
}
ConsoleIn = KEYPAD_CONSOLE_IN_DEV_FROM_THIS (ConIn);
ConsoleIn = KEYPAD_CONSOLE_IN_DEV_FROM_THIS(ConIn);
return LookupUnicodeString2 (
Language,
This->SupportedLanguages,
ConsoleIn->ControllerNameTable,
ControllerName,
(BOOLEAN)(This == &gKeypadComponentName)
);
return LookupUnicodeString2(
Language, This->SupportedLanguages, ConsoleIn->ControllerNameTable,
ControllerName, (BOOLEAN)(This == &gKeypadComponentName));
}

View File

@ -5,9 +5,9 @@
Copyright (c) 2006 - 2016, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
are licensed and made available under the terms and conditions of the BSD
License which accompanies this distribution. The full text of the license may
be found at http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
@ -32,11 +32,9 @@ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
EFI_STATUS
EFIAPI
KeypadControllerDriverSupported (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE Controller,
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath
);
KeypadControllerDriverSupported(
IN EFI_DRIVER_BINDING_PROTOCOL *This, IN EFI_HANDLE Controller,
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath);
/**
Create KEYPAD_CONSOLE_IN_DEV instance on controller.
@ -49,11 +47,9 @@ KeypadControllerDriverSupported (
**/
EFI_STATUS
EFIAPI
KeypadControllerDriverStart (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE Controller,
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath
);
KeypadControllerDriverStart(
IN EFI_DRIVER_BINDING_PROTOCOL *This, IN EFI_HANDLE Controller,
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath);
/**
Stop this driver on ControllerHandle. Support stopping any child handles
@ -71,12 +67,9 @@ KeypadControllerDriverStart (
**/
EFI_STATUS
EFIAPI
KeypadControllerDriverStop (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE Controller,
IN UINTN NumberOfChildren,
IN EFI_HANDLE *ChildHandleBuffer
);
KeypadControllerDriverStop(
IN EFI_DRIVER_BINDING_PROTOCOL *This, IN EFI_HANDLE Controller,
IN UINTN NumberOfChildren, IN EFI_HANDLE *ChildHandleBuffer);
/**
Free the waiting key notify list.
@ -87,21 +80,18 @@ KeypadControllerDriverStop (
@retval EFI_SUCCESS Sucess to free NotifyList
**/
EFI_STATUS
KbdFreeNotifyList (
IN OUT LIST_ENTRY *ListHead
);
KbdFreeNotifyList(IN OUT LIST_ENTRY *ListHead);
//
// DriverBinding Protocol Instance
//
EFI_DRIVER_BINDING_PROTOCOL gKeypadControllerDriver = {
KeypadControllerDriverSupported,
KeypadControllerDriverStart,
KeypadControllerDriverStop,
0xa,
NULL,
NULL
};
KeypadControllerDriverSupported,
KeypadControllerDriverStart,
KeypadControllerDriverStop,
0xa,
NULL,
NULL};
/**
Test controller is a keypad Controller.
@ -115,89 +105,75 @@ EFI_DRIVER_BINDING_PROTOCOL gKeypadControllerDriver = {
**/
EFI_STATUS
EFIAPI
KeypadControllerDriverSupported (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE Controller,
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath
)
KeypadControllerDriverSupported(
IN EFI_DRIVER_BINDING_PROTOCOL *This, IN EFI_HANDLE Controller,
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath)
{
EFI_STATUS Status;
KEYPAD_DEVICE_PROTOCOL *KeypadDevice;
EFI_STATUS Status;
KEYPAD_DEVICE_PROTOCOL *KeypadDevice;
//
// Open the IO Abstraction(s) needed to perform the supported test
//
Status = gBS->OpenProtocol (
Controller,
&gEFIDroidKeypadDeviceProtocolGuid,
(VOID **) &KeypadDevice,
This->DriverBindingHandle,
Controller,
EFI_OPEN_PROTOCOL_BY_DRIVER
);
if (EFI_ERROR (Status)) {
Status = gBS->OpenProtocol(
Controller, &gEFIDroidKeypadDeviceProtocolGuid, (VOID **)&KeypadDevice,
This->DriverBindingHandle, Controller, EFI_OPEN_PROTOCOL_BY_DRIVER);
if (EFI_ERROR(Status)) {
return Status;
}
//
// Close the I/O Abstraction(s) used to perform the supported test
//
gBS->CloseProtocol (
Controller,
&gEFIDroidKeypadDeviceProtocolGuid,
This->DriverBindingHandle,
Controller
);
gBS->CloseProtocol(
Controller, &gEFIDroidKeypadDeviceProtocolGuid, This->DriverBindingHandle,
Controller);
return Status;
}
STATIC
VOID
EFIAPI
KeypadReturnApiPushEfikeyBufTail (
KEYPAD_RETURN_API *This,
EFI_KEY_DATA *KeyData
)
VOID EFIAPI
KeypadReturnApiPushEfikeyBufTail(KEYPAD_RETURN_API *This, EFI_KEY_DATA *KeyData)
{
KEYPAD_CONSOLE_IN_DEV *ConsoleIn;
LIST_ENTRY *Link;
KEYPAD_CONSOLE_IN_EX_NOTIFY *CurrentNotify;
KEYPAD_CONSOLE_IN_DEV * ConsoleIn;
LIST_ENTRY * Link;
KEYPAD_CONSOLE_IN_EX_NOTIFY *CurrentNotify;
ConsoleIn = KEYPAD_CONSOLE_IN_DEV_FROM_KEYPAD_RETURN_API (This);
ConsoleIn = KEYPAD_CONSOLE_IN_DEV_FROM_KEYPAD_RETURN_API(This);
//
// If the key can not be converted then just return.
//
if (KeyData->Key.ScanCode == SCAN_NULL && KeyData->Key.UnicodeChar == CHAR_NULL) {
if (KeyData->Key.ScanCode == SCAN_NULL &&
KeyData->Key.UnicodeChar == CHAR_NULL) {
if (!ConsoleIn->IsSupportPartialKey) {
return;
}
}
//
// Signal KeyNotify process event if this key pressed matches any key registered.
// Signal KeyNotify process event if this key pressed matches any key
// registered.
//
for (Link = GetFirstNode (&ConsoleIn->NotifyList); !IsNull (&ConsoleIn->NotifyList, Link); Link = GetNextNode (&ConsoleIn->NotifyList, Link)) {
CurrentNotify = CR (
Link,
KEYPAD_CONSOLE_IN_EX_NOTIFY,
NotifyEntry,
KEYPAD_CONSOLE_IN_EX_NOTIFY_SIGNATURE
);
if (IsKeyRegistered (&CurrentNotify->KeyData, KeyData)) {
for (Link = GetFirstNode(&ConsoleIn->NotifyList);
!IsNull(&ConsoleIn->NotifyList, Link);
Link = GetNextNode(&ConsoleIn->NotifyList, Link)) {
CurrentNotify =
CR(Link, KEYPAD_CONSOLE_IN_EX_NOTIFY, NotifyEntry,
KEYPAD_CONSOLE_IN_EX_NOTIFY_SIGNATURE);
if (IsKeyRegistered(&CurrentNotify->KeyData, KeyData)) {
//
// The key notification function needs to run at TPL_CALLBACK
// while current TPL is TPL_NOTIFY. It will be invoked in
// KeyNotifyProcessHandler() which runs at TPL_CALLBACK.
//
PushEfikeyBufTail (&ConsoleIn->EfiKeyQueueForNotify, KeyData);
gBS->SignalEvent (ConsoleIn->KeyNotifyProcessEvent);
PushEfikeyBufTail(&ConsoleIn->EfiKeyQueueForNotify, KeyData);
gBS->SignalEvent(ConsoleIn->KeyNotifyProcessEvent);
}
}
PushEfikeyBufTail (&ConsoleIn->EfiKeyQueue, KeyData);
PushEfikeyBufTail(&ConsoleIn->EfiKeyQueue, KeyData);
}
/**
@ -211,48 +187,42 @@ KeypadReturnApiPushEfikeyBufTail (
**/
EFI_STATUS
EFIAPI
KeypadControllerDriverStart (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE Controller,
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath
)
KeypadControllerDriverStart(
IN EFI_DRIVER_BINDING_PROTOCOL *This, IN EFI_HANDLE Controller,
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath)
{
EFI_STATUS Status;
KEYPAD_DEVICE_PROTOCOL *KeypadDevice;
KEYPAD_CONSOLE_IN_DEV *ConsoleIn;
EFI_STATUS Status;
KEYPAD_DEVICE_PROTOCOL *KeypadDevice;
KEYPAD_CONSOLE_IN_DEV * ConsoleIn;
//
// Get the ISA I/O Protocol on Controller's handle
//
Status = gBS->OpenProtocol (
Controller,
&gEFIDroidKeypadDeviceProtocolGuid,
(VOID **) &KeypadDevice,
This->DriverBindingHandle,
Controller,
EFI_OPEN_PROTOCOL_BY_DRIVER
);
if (EFI_ERROR (Status)) {
Status = gBS->OpenProtocol(
Controller, &gEFIDroidKeypadDeviceProtocolGuid, (VOID **)&KeypadDevice,
This->DriverBindingHandle, Controller, EFI_OPEN_PROTOCOL_BY_DRIVER);
if (EFI_ERROR(Status)) {
return Status;
}
//
// Allocate private data
//
ConsoleIn = AllocateZeroPool (sizeof (KEYPAD_CONSOLE_IN_DEV));
ConsoleIn = AllocateZeroPool(sizeof(KEYPAD_CONSOLE_IN_DEV));
if (ConsoleIn == NULL) {
Status = EFI_OUT_OF_RESOURCES;
Status = EFI_OUT_OF_RESOURCES;
goto ErrorExit;
}
//
// Setup the device instance
//
ConsoleIn->Signature = KEYPAD_CONSOLE_IN_DEV_SIGNATURE;
ConsoleIn->Handle = Controller;
(ConsoleIn->ConIn).Reset = KeypadEfiReset;
(ConsoleIn->ConIn).ReadKeyStroke = KeypadReadKeyStroke;
ConsoleIn->KeypadDevice = KeypadDevice;
ConsoleIn->KeypadReturnApi.PushEfikeyBufTail = KeypadReturnApiPushEfikeyBufTail;
ConsoleIn->Last = (UINT64)-1;
ConsoleIn->Signature = KEYPAD_CONSOLE_IN_DEV_SIGNATURE;
ConsoleIn->Handle = Controller;
(ConsoleIn->ConIn).Reset = KeypadEfiReset;
(ConsoleIn->ConIn).ReadKeyStroke = KeypadReadKeyStroke;
ConsoleIn->KeypadDevice = KeypadDevice;
ConsoleIn->KeypadReturnApi.PushEfikeyBufTail =
KeypadReturnApiPushEfikeyBufTail;
ConsoleIn->Last = (UINT64)-1;
ConsoleIn->ConInEx.Reset = KeypadEfiResetEx;
ConsoleIn->ConInEx.ReadKeyStrokeEx = KeypadReadKeyStrokeEx;
@ -260,117 +230,84 @@ KeypadControllerDriverStart (
ConsoleIn->ConInEx.RegisterKeyNotify = KeypadRegisterKeyNotify;
ConsoleIn->ConInEx.UnregisterKeyNotify = KeypadUnregisterKeyNotify;
InitializeListHead (&ConsoleIn->NotifyList);
InitializeListHead(&ConsoleIn->NotifyList);
//
// Fix for random hangs in System waiting for the Key if no KBC is present in BIOS.
// When KBC decode (IO port 0x60/0x64 decode) is not enabled,
// KeypadRead will read back as 0xFF and return status is EFI_SUCCESS.
// So instead we read status register to detect after read if KBC decode is enabled.
// Fix for random hangs in System waiting for the Key if no KBC is present in
// BIOS. When KBC decode (IO port 0x60/0x64 decode) is not enabled, KeypadRead
// will read back as 0xFF and return status is EFI_SUCCESS. So instead we read
// status register to detect after read if KBC decode is enabled.
//
//
// Setup the WaitForKey event
//
Status = gBS->CreateEvent (
EVT_NOTIFY_WAIT,
TPL_NOTIFY,
KeypadWaitForKey,
ConsoleIn,
&((ConsoleIn->ConIn).WaitForKey)
);
if (EFI_ERROR (Status)) {
Status = EFI_OUT_OF_RESOURCES;
Status = gBS->CreateEvent(
EVT_NOTIFY_WAIT, TPL_NOTIFY, KeypadWaitForKey, ConsoleIn,
&((ConsoleIn->ConIn).WaitForKey));
if (EFI_ERROR(Status)) {
Status = EFI_OUT_OF_RESOURCES;
goto ErrorExit;
}
//
// Setup the WaitForKeyEx event
//
Status = gBS->CreateEvent (
EVT_NOTIFY_WAIT,
TPL_NOTIFY,
KeypadWaitForKeyEx,
ConsoleIn,
&(ConsoleIn->ConInEx.WaitForKeyEx)
);
if (EFI_ERROR (Status)) {
Status = EFI_OUT_OF_RESOURCES;
Status = gBS->CreateEvent(
EVT_NOTIFY_WAIT, TPL_NOTIFY, KeypadWaitForKeyEx, ConsoleIn,
&(ConsoleIn->ConInEx.WaitForKeyEx));
if (EFI_ERROR(Status)) {
Status = EFI_OUT_OF_RESOURCES;
goto ErrorExit;
}
// Setup a periodic timer, used for reading keystrokes at a fixed interval
//
Status = gBS->CreateEvent (
EVT_TIMER | EVT_NOTIFY_SIGNAL,
TPL_NOTIFY,
KeypadTimerHandler,
ConsoleIn,
&ConsoleIn->TimerEvent
);
if (EFI_ERROR (Status)) {
Status = EFI_OUT_OF_RESOURCES;
Status = gBS->CreateEvent(
EVT_TIMER | EVT_NOTIFY_SIGNAL, TPL_NOTIFY, KeypadTimerHandler, ConsoleIn,
&ConsoleIn->TimerEvent);
if (EFI_ERROR(Status)) {
Status = EFI_OUT_OF_RESOURCES;
goto ErrorExit;
}
Status = gBS->SetTimer (
ConsoleIn->TimerEvent,
TimerPeriodic,
KEYPAD_TIMER_INTERVAL
);
if (EFI_ERROR (Status)) {
Status = EFI_OUT_OF_RESOURCES;
Status = gBS->SetTimer(
ConsoleIn->TimerEvent, TimerPeriodic, KEYPAD_TIMER_INTERVAL);
if (EFI_ERROR(Status)) {
Status = EFI_OUT_OF_RESOURCES;
goto ErrorExit;
}
Status = gBS->CreateEvent (
EVT_NOTIFY_SIGNAL,
TPL_CALLBACK,
KeyNotifyProcessHandler,
ConsoleIn,
&ConsoleIn->KeyNotifyProcessEvent
);
if (EFI_ERROR (Status)) {
Status = EFI_OUT_OF_RESOURCES;
Status = gBS->CreateEvent(
EVT_NOTIFY_SIGNAL, TPL_CALLBACK, KeyNotifyProcessHandler, ConsoleIn,
&ConsoleIn->KeyNotifyProcessEvent);
if (EFI_ERROR(Status)) {
Status = EFI_OUT_OF_RESOURCES;
goto ErrorExit;
}
//
// Reset the keypad device
//
Status = ConsoleIn->ConInEx.Reset (&ConsoleIn->ConInEx, FALSE);
if (EFI_ERROR (Status)) {
Status = EFI_DEVICE_ERROR;
Status = ConsoleIn->ConInEx.Reset(&ConsoleIn->ConInEx, FALSE);
if (EFI_ERROR(Status)) {
Status = EFI_DEVICE_ERROR;
goto ErrorExit;
}
ConsoleIn->ControllerNameTable = NULL;
AddUnicodeString2 (
"eng",
gKeypadComponentName.SupportedLanguages,
&ConsoleIn->ControllerNameTable,
L"Keypad Device",
TRUE
);
AddUnicodeString2 (
"en",
gKeypadComponentName2.SupportedLanguages,
&ConsoleIn->ControllerNameTable,
L"Keypad Device",
FALSE
);
AddUnicodeString2(
"eng", gKeypadComponentName.SupportedLanguages,
&ConsoleIn->ControllerNameTable, L"Keypad Device", TRUE);
AddUnicodeString2(
"en", gKeypadComponentName2.SupportedLanguages,
&ConsoleIn->ControllerNameTable, L"Keypad Device", FALSE);
//
// Install protocol interfaces for the keypad device.
//
Status = gBS->InstallMultipleProtocolInterfaces (
&Controller,
&gEfiSimpleTextInProtocolGuid,
&ConsoleIn->ConIn,
&gEfiSimpleTextInputExProtocolGuid,
&ConsoleIn->ConInEx,
NULL
);
if (EFI_ERROR (Status)) {
Status = gBS->InstallMultipleProtocolInterfaces(
&Controller, &gEfiSimpleTextInProtocolGuid, &ConsoleIn->ConIn,
&gEfiSimpleTextInputExProtocolGuid, &ConsoleIn->ConInEx, NULL);
if (EFI_ERROR(Status)) {
goto ErrorExit;
}
@ -378,33 +315,30 @@ KeypadControllerDriverStart (
ErrorExit:
if ((ConsoleIn != NULL) && (ConsoleIn->ConIn.WaitForKey != NULL)) {
gBS->CloseEvent (ConsoleIn->ConIn.WaitForKey);
gBS->CloseEvent(ConsoleIn->ConIn.WaitForKey);
}
if ((ConsoleIn != NULL) && (ConsoleIn->TimerEvent != NULL)) {
gBS->CloseEvent (ConsoleIn->TimerEvent);
gBS->CloseEvent(ConsoleIn->TimerEvent);
}
if ((ConsoleIn != NULL) && (ConsoleIn->ConInEx.WaitForKeyEx != NULL)) {
gBS->CloseEvent (ConsoleIn->ConInEx.WaitForKeyEx);
gBS->CloseEvent(ConsoleIn->ConInEx.WaitForKeyEx);
}
if ((ConsoleIn != NULL) && (ConsoleIn->KeyNotifyProcessEvent != NULL)) {
gBS->CloseEvent (ConsoleIn->KeyNotifyProcessEvent);
gBS->CloseEvent(ConsoleIn->KeyNotifyProcessEvent);
}
KbdFreeNotifyList (&ConsoleIn->NotifyList);
KbdFreeNotifyList(&ConsoleIn->NotifyList);
if ((ConsoleIn != NULL) && (ConsoleIn->ControllerNameTable != NULL)) {
FreeUnicodeStringTable (ConsoleIn->ControllerNameTable);
FreeUnicodeStringTable(ConsoleIn->ControllerNameTable);
}
if (ConsoleIn != NULL) {
gBS->FreePool (ConsoleIn);
gBS->FreePool(ConsoleIn);
}
gBS->CloseProtocol (
Controller,
&gEFIDroidKeypadDeviceProtocolGuid,
This->DriverBindingHandle,
Controller
);
gBS->CloseProtocol(
Controller, &gEFIDroidKeypadDeviceProtocolGuid, This->DriverBindingHandle,
Controller);
return Status;
}
@ -425,90 +359,69 @@ ErrorExit:
**/
EFI_STATUS
EFIAPI
KeypadControllerDriverStop (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE Controller,
IN UINTN NumberOfChildren,
IN EFI_HANDLE *ChildHandleBuffer
)
KeypadControllerDriverStop(
IN EFI_DRIVER_BINDING_PROTOCOL *This, IN EFI_HANDLE Controller,
IN UINTN NumberOfChildren, IN EFI_HANDLE *ChildHandleBuffer)
{
EFI_STATUS Status;
EFI_STATUS Status;
EFI_SIMPLE_TEXT_INPUT_PROTOCOL *ConIn;
KEYPAD_CONSOLE_IN_DEV *ConsoleIn;
KEYPAD_CONSOLE_IN_DEV * ConsoleIn;
//
// Disable Keypad
//
Status = gBS->OpenProtocol (
Controller,
&gEfiSimpleTextInProtocolGuid,
(VOID **) &ConIn,
This->DriverBindingHandle,
Controller,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
Status = gBS->OpenProtocol(
Controller, &gEfiSimpleTextInProtocolGuid, (VOID **)&ConIn,
This->DriverBindingHandle, Controller, EFI_OPEN_PROTOCOL_GET_PROTOCOL);
if (EFI_ERROR(Status)) {
return Status;
}
Status = gBS->OpenProtocol (
Controller,
&gEfiSimpleTextInputExProtocolGuid,
NULL,
This->DriverBindingHandle,
Controller,
EFI_OPEN_PROTOCOL_TEST_PROTOCOL
);
if (EFI_ERROR (Status)) {
Status = gBS->OpenProtocol(
Controller, &gEfiSimpleTextInputExProtocolGuid, NULL,
This->DriverBindingHandle, Controller, EFI_OPEN_PROTOCOL_TEST_PROTOCOL);
if (EFI_ERROR(Status)) {
return Status;
}
ConsoleIn = KEYPAD_CONSOLE_IN_DEV_FROM_THIS (ConIn);
ConsoleIn = KEYPAD_CONSOLE_IN_DEV_FROM_THIS(ConIn);
if (ConsoleIn->TimerEvent != NULL) {
gBS->CloseEvent (ConsoleIn->TimerEvent);
gBS->CloseEvent(ConsoleIn->TimerEvent);
ConsoleIn->TimerEvent = NULL;
}
//
// Uninstall the SimpleTextIn and SimpleTextInEx protocols
//
Status = gBS->UninstallMultipleProtocolInterfaces (
Controller,
&gEfiSimpleTextInProtocolGuid,
&ConsoleIn->ConIn,
&gEfiSimpleTextInputExProtocolGuid,
&ConsoleIn->ConInEx,
NULL
);
if (EFI_ERROR (Status)) {
Status = gBS->UninstallMultipleProtocolInterfaces(
Controller, &gEfiSimpleTextInProtocolGuid, &ConsoleIn->ConIn,
&gEfiSimpleTextInputExProtocolGuid, &ConsoleIn->ConInEx, NULL);
if (EFI_ERROR(Status)) {
return Status;
}
gBS->CloseProtocol (
Controller,
&gEFIDroidKeypadDeviceProtocolGuid,
This->DriverBindingHandle,
Controller
);
gBS->CloseProtocol(
Controller, &gEFIDroidKeypadDeviceProtocolGuid, This->DriverBindingHandle,
Controller);
//
// Free other resources
//
if ((ConsoleIn->ConIn).WaitForKey != NULL) {
gBS->CloseEvent ((ConsoleIn->ConIn).WaitForKey);
gBS->CloseEvent((ConsoleIn->ConIn).WaitForKey);
(ConsoleIn->ConIn).WaitForKey = NULL;
}
if (ConsoleIn->ConInEx.WaitForKeyEx != NULL) {
gBS->CloseEvent (ConsoleIn->ConInEx.WaitForKeyEx);
gBS->CloseEvent(ConsoleIn->ConInEx.WaitForKeyEx);
ConsoleIn->ConInEx.WaitForKeyEx = NULL;
}
if (ConsoleIn->KeyNotifyProcessEvent != NULL) {
gBS->CloseEvent (ConsoleIn->KeyNotifyProcessEvent);
gBS->CloseEvent(ConsoleIn->KeyNotifyProcessEvent);
ConsoleIn->KeyNotifyProcessEvent = NULL;
}
KbdFreeNotifyList (&ConsoleIn->NotifyList);
FreeUnicodeStringTable (ConsoleIn->ControllerNameTable);
gBS->FreePool (ConsoleIn);
KbdFreeNotifyList(&ConsoleIn->NotifyList);
FreeUnicodeStringTable(ConsoleIn->ControllerNameTable);
gBS->FreePool(ConsoleIn);
return EFI_SUCCESS;
}
@ -522,24 +435,19 @@ KeypadControllerDriverStop (
@retval EFI_SUCCESS Sucess to free NotifyList
**/
EFI_STATUS
KbdFreeNotifyList (
IN OUT LIST_ENTRY *ListHead
)
KbdFreeNotifyList(IN OUT LIST_ENTRY *ListHead)
{
KEYPAD_CONSOLE_IN_EX_NOTIFY *NotifyNode;
if (ListHead == NULL) {
return EFI_INVALID_PARAMETER;
}
while (!IsListEmpty (ListHead)) {
NotifyNode = CR (
ListHead->ForwardLink,
KEYPAD_CONSOLE_IN_EX_NOTIFY,
NotifyEntry,
KEYPAD_CONSOLE_IN_EX_NOTIFY_SIGNATURE
);
RemoveEntryList (ListHead->ForwardLink);
gBS->FreePool (NotifyNode);
while (!IsListEmpty(ListHead)) {
NotifyNode =
CR(ListHead->ForwardLink, KEYPAD_CONSOLE_IN_EX_NOTIFY, NotifyEntry,
KEYPAD_CONSOLE_IN_EX_NOTIFY_SIGNATURE);
RemoveEntryList(ListHead->ForwardLink);
gBS->FreePool(NotifyNode);
}
return EFI_SUCCESS;
@ -557,27 +465,17 @@ KbdFreeNotifyList (
**/
EFI_STATUS
EFIAPI
InitializeKeypad(
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
InitializeKeypad(IN EFI_HANDLE ImageHandle, IN EFI_SYSTEM_TABLE *SystemTable)
{
EFI_STATUS Status;
EFI_STATUS Status;
//
// Install driver model protocol(s).
//
Status = EfiLibInstallDriverBindingComponentName2 (
ImageHandle,
SystemTable,
&gKeypadControllerDriver,
ImageHandle,
&gKeypadComponentName,
&gKeypadComponentName2
);
ASSERT_EFI_ERROR (Status);
Status = EfiLibInstallDriverBindingComponentName2(
ImageHandle, SystemTable, &gKeypadControllerDriver, ImageHandle,
&gKeypadComponentName, &gKeypadComponentName2);
ASSERT_EFI_ERROR(Status);
return Status;
}

View File

@ -3,9 +3,9 @@
Copyright (c) 2006 - 2016, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
are licensed and made available under the terms and conditions of the BSD
License which accompanies this distribution. The full text of the license may
be found at http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
@ -17,118 +17,117 @@ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
#include <Uefi.h>
#include <Protocol/KeypadDevice.h>
#include <Protocol/SimpleTextIn.h>
#include <Protocol/SimpleTextInEx.h>
#include <Protocol/KeypadDevice.h>
#include <Library/IoLib.h>
#include <Library/UefiDriverEntryPoint.h>
#include <Library/UefiLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Library/DebugLib.h>
#include <Library/UefiRuntimeServicesTableLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/BaseLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/TimerLib.h>
#include <Library/DebugLib.h>
#include <Library/IoLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/PcdLib.h>
#include <Library/TimerLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Library/UefiDriverEntryPoint.h>
#include <Library/UefiLib.h>
#include <Library/UefiRuntimeServicesTableLib.h>
//
// Global Variables
//
extern EFI_DRIVER_BINDING_PROTOCOL gKeypadControllerDriver;
extern EFI_COMPONENT_NAME_PROTOCOL gKeypadComponentName;
extern EFI_COMPONENT_NAME2_PROTOCOL gKeypadComponentName2;
extern EFI_DRIVER_BINDING_PROTOCOL gKeypadControllerDriver;
extern EFI_COMPONENT_NAME_PROTOCOL gKeypadComponentName;
extern EFI_COMPONENT_NAME2_PROTOCOL gKeypadComponentName2;
//
// Driver Private Data
//
#define KEYPAD_CONSOLE_IN_DEV_SIGNATURE SIGNATURE_32 ('k', 'k', 'e', 'y')
#define KEYPAD_CONSOLE_IN_EX_NOTIFY_SIGNATURE SIGNATURE_32 ('k', 'c', 'e', 'n')
#define KEYPAD_CONSOLE_IN_DEV_SIGNATURE SIGNATURE_32('k', 'k', 'e', 'y')
#define KEYPAD_CONSOLE_IN_EX_NOTIFY_SIGNATURE SIGNATURE_32('k', 'c', 'e', 'n')
typedef struct _KEYPAD_CONSOLE_IN_EX_NOTIFY {
UINTN Signature;
EFI_KEY_DATA KeyData;
EFI_KEY_NOTIFY_FUNCTION KeyNotificationFn;
LIST_ENTRY NotifyEntry;
UINTN Signature;
EFI_KEY_DATA KeyData;
EFI_KEY_NOTIFY_FUNCTION KeyNotificationFn;
LIST_ENTRY NotifyEntry;
} KEYPAD_CONSOLE_IN_EX_NOTIFY;
#define KEYPAD_EFI_KEY_MAX_COUNT 256
#define KEYPAD_EFI_KEY_MAX_COUNT 256
typedef struct {
EFI_KEY_DATA Buffer[KEYPAD_EFI_KEY_MAX_COUNT];
UINTN Head;
UINTN Tail;
EFI_KEY_DATA Buffer[KEYPAD_EFI_KEY_MAX_COUNT];
UINTN Head;
UINTN Tail;
} EFI_KEY_QUEUE;
typedef struct {
UINTN Signature;
UINTN Signature;
EFI_HANDLE Handle;
EFI_SIMPLE_TEXT_INPUT_PROTOCOL ConIn;
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL ConInEx;
EFI_HANDLE Handle;
EFI_SIMPLE_TEXT_INPUT_PROTOCOL ConIn;
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL ConInEx;
EFI_EVENT TimerEvent;
EFI_EVENT TimerEvent;
KEYPAD_DEVICE_PROTOCOL *KeypadDevice;
KEYPAD_RETURN_API KeypadReturnApi;
KEYPAD_DEVICE_PROTOCOL *KeypadDevice;
KEYPAD_RETURN_API KeypadReturnApi;
// counter value of the last poll
UINT64 Last;
UINT64 Last;
BOOLEAN LeftCtrl;
BOOLEAN RightCtrl;
BOOLEAN LeftAlt;
BOOLEAN RightAlt;
BOOLEAN LeftShift;
BOOLEAN RightShift;
BOOLEAN LeftLogo;
BOOLEAN RightLogo;
BOOLEAN Menu;
BOOLEAN SysReq;
BOOLEAN LeftCtrl;
BOOLEAN RightCtrl;
BOOLEAN LeftAlt;
BOOLEAN RightAlt;
BOOLEAN LeftShift;
BOOLEAN RightShift;
BOOLEAN LeftLogo;
BOOLEAN RightLogo;
BOOLEAN Menu;
BOOLEAN SysReq;
BOOLEAN CapsLock;
BOOLEAN NumLock;
BOOLEAN ScrollLock;
BOOLEAN CapsLock;
BOOLEAN NumLock;
BOOLEAN ScrollLock;
BOOLEAN IsSupportPartialKey;
BOOLEAN IsSupportPartialKey;
//
// Queue storing key scancodes
//
EFI_KEY_QUEUE EfiKeyQueue;
EFI_KEY_QUEUE EfiKeyQueueForNotify;
EFI_KEY_QUEUE EfiKeyQueue;
EFI_KEY_QUEUE EfiKeyQueueForNotify;
//
// Error state
//
BOOLEAN KeypadErr;
BOOLEAN KeypadErr;
EFI_UNICODE_STRING_TABLE *ControllerNameTable;
EFI_UNICODE_STRING_TABLE *ControllerNameTable;
//
// Notification Function List
//
LIST_ENTRY NotifyList;
EFI_EVENT KeyNotifyProcessEvent;
LIST_ENTRY NotifyList;
EFI_EVENT KeyNotifyProcessEvent;
} KEYPAD_CONSOLE_IN_DEV;
#define KEYPAD_CONSOLE_IN_DEV_FROM_KEYPAD_RETURN_API(a) CR (a, KEYPAD_CONSOLE_IN_DEV, KeypadReturnApi, KEYPAD_CONSOLE_IN_DEV_SIGNATURE)
#define KEYPAD_CONSOLE_IN_DEV_FROM_THIS(a) CR (a, KEYPAD_CONSOLE_IN_DEV, ConIn, KEYPAD_CONSOLE_IN_DEV_SIGNATURE)
#define TEXT_INPUT_EX_KEYPAD_CONSOLE_IN_DEV_FROM_THIS(a) \
CR (a, \
KEYPAD_CONSOLE_IN_DEV, \
ConInEx, \
KEYPAD_CONSOLE_IN_DEV_SIGNATURE \
)
#define KEYPAD_CONSOLE_IN_DEV_FROM_KEYPAD_RETURN_API(a) \
CR(a, KEYPAD_CONSOLE_IN_DEV, KeypadReturnApi, KEYPAD_CONSOLE_IN_DEV_SIGNATURE)
#define KEYPAD_CONSOLE_IN_DEV_FROM_THIS(a) \
CR(a, KEYPAD_CONSOLE_IN_DEV, ConIn, KEYPAD_CONSOLE_IN_DEV_SIGNATURE)
#define TEXT_INPUT_EX_KEYPAD_CONSOLE_IN_DEV_FROM_THIS(a) \
CR(a, KEYPAD_CONSOLE_IN_DEV, ConInEx, KEYPAD_CONSOLE_IN_DEV_SIGNATURE)
#define TABLE_END 0x0
#define KEYPAD_TIMER_INTERVAL 200000 // 0.02s
#define KEYPAD_TIMER_INTERVAL 200000 // 0.02s
//
// Driver entry point
//
/**
The user Entry Point for module KeypadDxe. The user code starts with this function.
The user Entry Point for module KeypadDxe. The user code starts with this
function.
@param[in] ImageHandle The firmware allocated handle for the EFI image.
@param[in] SystemTable A pointer to the EFI System Table.
@ -139,10 +138,8 @@ typedef struct {
**/
EFI_STATUS
EFIAPI
InstallKeypadDriver (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
);
InstallKeypadDriver(
IN EFI_HANDLE ImageHandle, IN EFI_SYSTEM_TABLE *SystemTable);
//
// Other functions that are used among .c files
@ -154,12 +151,7 @@ InstallKeypadDriver (
@param Event Indicates the event that invoke this function.
@param Context Indicates the calling context.
**/
VOID
EFIAPI
KeyNotifyProcessHandler (
IN EFI_EVENT Event,
IN VOID *Context
);
VOID EFIAPI KeyNotifyProcessHandler(IN EFI_EVENT Event, IN VOID *Context);
/**
Perform 8042 controller and keypad Initialization.
@ -173,10 +165,8 @@ KeyNotifyProcessHandler (
@retval EFI_SUCCESS Success to init keypad
**/
EFI_STATUS
InitKeypad (
IN OUT KEYPAD_CONSOLE_IN_DEV *ConsoleIn,
IN BOOLEAN ExtendedVerification
);
InitKeypad(
IN OUT KEYPAD_CONSOLE_IN_DEV *ConsoleIn, IN BOOLEAN ExtendedVerification);
/**
Timer event handler: read a series of scancodes from 8042
@ -189,12 +179,7 @@ InitKeypad (
@param Context - A KEYPAD_CONSOLE_IN_DEV pointer
**/
VOID
EFIAPI
KeypadTimerHandler (
IN EFI_EVENT Event,
IN VOID *Context
);
VOID EFIAPI KeypadTimerHandler(IN EFI_EVENT Event, IN VOID *Context);
/**
logic reset keypad
@ -203,16 +188,14 @@ KeypadTimerHandler (
@param This Pointer to instance of EFI_SIMPLE_TEXT_INPUT_PROTOCOL
@param ExtendedVerification Indicate that the driver may perform a more
exhaustive verification operation of the device during
reset, now this par is ignored in this driver
exhaustive verification operation of the device
during reset, now this par is ignored in this driver
**/
EFI_STATUS
EFIAPI
KeypadEfiReset (
IN EFI_SIMPLE_TEXT_INPUT_PROTOCOL *This,
IN BOOLEAN ExtendedVerification
);
KeypadEfiReset(
IN EFI_SIMPLE_TEXT_INPUT_PROTOCOL *This, IN BOOLEAN ExtendedVerification);
/**
Implement SIMPLE_TEXT_IN.ReadKeyStroke().
@ -225,10 +208,8 @@ KeypadEfiReset (
**/
EFI_STATUS
EFIAPI
KeypadReadKeyStroke (
IN EFI_SIMPLE_TEXT_INPUT_PROTOCOL *This,
OUT EFI_INPUT_KEY *Key
);
KeypadReadKeyStroke(
IN EFI_SIMPLE_TEXT_INPUT_PROTOCOL *This, OUT EFI_INPUT_KEY *Key);
/**
Event notification function for SIMPLE_TEXT_IN.WaitForKey event
@ -238,27 +219,17 @@ KeypadReadKeyStroke (
@param Context waitting context
**/
VOID
EFIAPI
KeypadWaitForKey (
IN EFI_EVENT Event,
IN VOID *Context
);
VOID EFIAPI KeypadWaitForKey(IN EFI_EVENT Event, IN VOID *Context);
/**
Event notification function for SIMPLE_TEXT_INPUT_EX_PROTOCOL.WaitForKeyEx event
Signal the event if there is key available
Event notification function for SIMPLE_TEXT_INPUT_EX_PROTOCOL.WaitForKeyEx
event Signal the event if there is key available
@param Event event object
@param Context waiting context
**/
VOID
EFIAPI
KeypadWaitForKeyEx (
IN EFI_EVENT Event,
IN VOID *Context
);
VOID EFIAPI KeypadWaitForKeyEx(IN EFI_EVENT Event, IN VOID *Context);
//
// Simple Text Input Ex protocol function prototypes
@ -271,16 +242,15 @@ KeypadWaitForKeyEx (
@param ExtendedVerification - Driver may perform diagnostics on reset.
@retval EFI_SUCCESS - The device was reset.
@retval EFI_DEVICE_ERROR - The device is not functioning properly and could
not be reset.
@retval EFI_DEVICE_ERROR - The device is not functioning properly and
could not be reset.
**/
EFI_STATUS
EFIAPI
KeypadEfiResetEx (
IN EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL *This,
IN BOOLEAN ExtendedVerification
);
KeypadEfiResetEx(
IN EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL *This,
IN BOOLEAN ExtendedVerification);
/**
Reads the next keystroke from the input device. The WaitForKey Event can
@ -288,22 +258,20 @@ KeypadEfiResetEx (
@param This - Protocol instance pointer.
@param KeyData - A pointer to a buffer that is filled in with the keystroke
state data for the key that was pressed.
@param KeyData - A pointer to a buffer that is filled in with the
keystroke state data for the key that was pressed.
@retval EFI_SUCCESS - The keystroke information was returned.
@retval EFI_NOT_READY - There was no keystroke data availiable.
@retval EFI_DEVICE_ERROR - The keystroke information was not returned due to
hardware errors.
@retval EFI_DEVICE_ERROR - The keystroke information was not returned
due to hardware errors.
@retval EFI_INVALID_PARAMETER - KeyData is NULL.
**/
EFI_STATUS
EFIAPI
KeypadReadKeyStrokeEx (
IN EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL *This,
OUT EFI_KEY_DATA *KeyData
);
KeypadReadKeyStrokeEx(
IN EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL *This, OUT EFI_KEY_DATA *KeyData);
/**
Set certain state for the input device.
@ -313,61 +281,64 @@ KeypadReadKeyStrokeEx (
state for the input device.
@retval EFI_SUCCESS - The device state was set successfully.
@retval EFI_DEVICE_ERROR - The device is not functioning correctly and could
not have the setting adjusted.
@retval EFI_UNSUPPORTED - The device does not have the ability to set its state.
@retval EFI_DEVICE_ERROR - The device is not functioning correctly and
could not have the setting adjusted.
@retval EFI_UNSUPPORTED - The device does not have the ability to set
its state.
@retval EFI_INVALID_PARAMETER - KeyToggleState is NULL.
**/
EFI_STATUS
EFIAPI
KeypadSetState (
IN EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL *This,
IN EFI_KEY_TOGGLE_STATE *KeyToggleState
);
KeypadSetState(
IN EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL *This,
IN EFI_KEY_TOGGLE_STATE *KeyToggleState);
/**
Register a notification function for a particular keystroke for the input device.
Register a notification function for a particular keystroke for the input
device.
@param This - Protocol instance pointer.
@param KeyData - A pointer to a buffer that is filled in with the keystroke
information data for the key that was pressed.
@param KeyNotificationFunction - Points to the function to be called when the key
sequence is typed specified by KeyData.
@param NotifyHandle - Points to the unique handle assigned to the registered notification.
@param KeyData - A pointer to a buffer that is filled in
with the keystroke information data for the key that was pressed.
@param KeyNotificationFunction - Points to the function to be called when
the key sequence is typed specified by KeyData.
@param NotifyHandle - Points to the unique handle assigned to the
registered notification.
@retval EFI_SUCCESS - The notification function was registered successfully.
@retval EFI_OUT_OF_RESOURCES - Unable to allocate resources for necesssary data structures.
@retval EFI_SUCCESS - The notification function was registered
successfully.
@retval EFI_OUT_OF_RESOURCES - Unable to allocate resources for
necesssary data structures.
@retval EFI_INVALID_PARAMETER - KeyData or NotifyHandle is NULL.
**/
EFI_STATUS
EFIAPI
KeypadRegisterKeyNotify (
IN EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL *This,
IN EFI_KEY_DATA *KeyData,
IN EFI_KEY_NOTIFY_FUNCTION KeyNotificationFunction,
OUT VOID **NotifyHandle
);
KeypadRegisterKeyNotify(
IN EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL *This, IN EFI_KEY_DATA *KeyData,
IN EFI_KEY_NOTIFY_FUNCTION KeyNotificationFunction,
OUT VOID **NotifyHandle);
/**
Remove a registered notification function from a particular keystroke.
@param This - Protocol instance pointer.
@param NotificationHandle - The handle of the notification function being unregistered.
@param NotificationHandle - The handle of the notification function
being unregistered.
@retval EFI_SUCCESS - The notification function was unregistered successfully.
@retval EFI_SUCCESS - The notification function was unregistered
successfully.
@retval EFI_INVALID_PARAMETER - The NotificationHandle is invalid.
@retval EFI_NOT_FOUND - Can not find the matching entry in database.
@retval EFI_NOT_FOUND - Can not find the matching entry in
database.
**/
EFI_STATUS
EFIAPI
KeypadUnregisterKeyNotify (
IN EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL *This,
IN VOID *NotificationHandle
);
KeypadUnregisterKeyNotify(
IN EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL *This, IN VOID *NotificationHandle);
/**
Push one key data to the EFI key buffer.
@ -375,28 +346,21 @@ KeypadUnregisterKeyNotify (
@param Queue Pointer to instance of EFI_KEY_QUEUE.
@param KeyData The key data to push.
**/
VOID
PushEfikeyBufTail (
IN EFI_KEY_QUEUE *Queue,
IN EFI_KEY_DATA *KeyData
);
VOID PushEfikeyBufTail(IN EFI_KEY_QUEUE *Queue, IN EFI_KEY_DATA *KeyData);
/**
Judge whether is a registed key
@param RegsiteredData A pointer to a buffer that is filled in with the keystroke
state data for the key that was registered.
@param InputData A pointer to a buffer that is filled in with the keystroke
state data for the key that was pressed.
@param RegsiteredData A pointer to a buffer that is filled in with the
keystroke state data for the key that was registered.
@param InputData A pointer to a buffer that is filled in with the
keystroke state data for the key that was pressed.
@retval TRUE Key be pressed matches a registered key.
@retval FLASE Match failed.
**/
BOOLEAN
IsKeyRegistered (
IN EFI_KEY_DATA *RegsiteredData,
IN EFI_KEY_DATA *InputData
);
IsKeyRegistered(IN EFI_KEY_DATA *RegsiteredData, IN EFI_KEY_DATA *InputData);
#endif

View File

@ -3,9 +3,9 @@
Copyright (c) 2006 - 2016, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
are licensed and made available under the terms and conditions of the BSD
License which accompanies this distribution. The full text of the license may
be found at http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
@ -21,11 +21,7 @@ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
@param ErrMsg Unicode string of error message
**/
VOID
KeypadError (
IN KEYPAD_CONSOLE_IN_DEV *ConsoleIn,
IN CHAR16 *ErrMsg
)
VOID KeypadError(IN KEYPAD_CONSOLE_IN_DEV *ConsoleIn, IN CHAR16 *ErrMsg)
{
ConsoleIn->KeypadErr = TRUE;
}
@ -41,42 +37,39 @@ KeypadError (
@param Context A KEYPAD_CONSOLE_IN_DEV pointer
**/
VOID
EFIAPI
KeypadTimerHandler (
IN EFI_EVENT Event,
IN VOID *Context
)
VOID EFIAPI KeypadTimerHandler(IN EFI_EVENT Event, IN VOID *Context)
{
EFI_TPL OldTpl;
KEYPAD_CONSOLE_IN_DEV *ConsoleIn;
EFI_TPL OldTpl;
KEYPAD_CONSOLE_IN_DEV *ConsoleIn;
ConsoleIn = (KEYPAD_CONSOLE_IN_DEV *) Context;
ConsoleIn = (KEYPAD_CONSOLE_IN_DEV *)Context;
//
// Enter critical section
//
OldTpl = gBS->RaiseTPL (TPL_NOTIFY);
OldTpl = gBS->RaiseTPL(TPL_NOTIFY);
if (((KEYPAD_CONSOLE_IN_DEV *) Context)->KeypadErr) {
if (((KEYPAD_CONSOLE_IN_DEV *)Context)->KeypadErr) {
//
// Leave critical section and return
//
gBS->RestoreTPL (OldTpl);
return ;
gBS->RestoreTPL(OldTpl);
return;
}
UINT64 CurrentCounterValue = GetPerformanceCounter();
UINT64 DeltaCounter = CurrentCounterValue - ConsoleIn->Last;
ConsoleIn->Last = CurrentCounterValue;
UINT64 DeltaCounter = CurrentCounterValue - ConsoleIn->Last;
ConsoleIn->Last = CurrentCounterValue;
ConsoleIn->KeypadDevice->GetKeys(ConsoleIn->KeypadDevice, &ConsoleIn->KeypadReturnApi, GetTimeInNanoSecond(DeltaCounter));
ConsoleIn->KeypadDevice->GetKeys(
ConsoleIn->KeypadDevice, &ConsoleIn->KeypadReturnApi,
GetTimeInNanoSecond(DeltaCounter));
//
// Leave critical section and return
//
gBS->RestoreTPL (OldTpl);
gBS->RestoreTPL(OldTpl);
}
/**
@ -91,22 +84,20 @@ KeypadTimerHandler (
@retval EFI_SUCCESS Success to init keypad
**/
EFI_STATUS
InitKeypad (
IN OUT KEYPAD_CONSOLE_IN_DEV *ConsoleIn,
IN BOOLEAN ExtendedVerification
)
InitKeypad(
IN OUT KEYPAD_CONSOLE_IN_DEV *ConsoleIn, IN BOOLEAN ExtendedVerification)
{
EFI_STATUS Status;
EFI_STATUS Status;
Status = EFI_SUCCESS;
Status = EFI_SUCCESS;
ConsoleIn->KeypadDevice->Reset(ConsoleIn->KeypadDevice);
//
// Clear Memory Scancode Buffer
//
ConsoleIn->EfiKeyQueue.Head = 0;
ConsoleIn->EfiKeyQueue.Tail = 0;
ConsoleIn->EfiKeyQueue.Head = 0;
ConsoleIn->EfiKeyQueue.Tail = 0;
ConsoleIn->EfiKeyQueueForNotify.Head = 0;
ConsoleIn->EfiKeyQueueForNotify.Tail = 0;
@ -129,10 +120,10 @@ InitKeypad (
ConsoleIn->IsSupportPartialKey = FALSE;
if (!EFI_ERROR (Status)) {
if (!EFI_ERROR(Status)) {
return EFI_SUCCESS;
} else {
}
else {
return EFI_DEVICE_ERROR;
}
}

View File

@ -4,16 +4,15 @@
Copyright (c) 2006 - 2016, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
are licensed and made available under the terms and conditions of the BSD
License which accompanies this distribution. The full text of the license may
be found at http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "Keypad.h"
/**
@ -25,11 +24,9 @@ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
@retval FALSE The EFI key buffer isn't empty.
**/
BOOLEAN
IsEfikeyBufEmpty (
IN EFI_KEY_QUEUE *Queue
)
IsEfikeyBufEmpty(IN EFI_KEY_QUEUE *Queue)
{
return (BOOLEAN) (Queue->Head == Queue->Tail);
return (BOOLEAN)(Queue->Head == Queue->Tail);
}
/**
@ -42,19 +39,16 @@ IsEfikeyBufEmpty (
@retval EFI_NOT_READY There is no key data available.
**/
EFI_STATUS
PopEfikeyBufHead (
IN EFI_KEY_QUEUE *Queue,
OUT EFI_KEY_DATA *KeyData OPTIONAL
)
PopEfikeyBufHead(IN EFI_KEY_QUEUE *Queue, OUT EFI_KEY_DATA *KeyData OPTIONAL)
{
if (IsEfikeyBufEmpty (Queue)) {
if (IsEfikeyBufEmpty(Queue)) {
return EFI_NOT_READY;
}
//
// Retrieve and remove the values
//
if (KeyData != NULL) {
CopyMem (KeyData, &Queue->Buffer[Queue->Head], sizeof (EFI_KEY_DATA));
CopyMem(KeyData, &Queue->Buffer[Queue->Head], sizeof(EFI_KEY_DATA));
}
Queue->Head = (Queue->Head + 1) % KEYPAD_EFI_KEY_MAX_COUNT;
return EFI_SUCCESS;
@ -66,62 +60,57 @@ PopEfikeyBufHead (
@param Queue Pointer to instance of EFI_KEY_QUEUE.
@param KeyData The key data to push.
**/
VOID
PushEfikeyBufTail (
IN EFI_KEY_QUEUE *Queue,
IN EFI_KEY_DATA *KeyData
)
VOID PushEfikeyBufTail(IN EFI_KEY_QUEUE *Queue, IN EFI_KEY_DATA *KeyData)
{
if ((Queue->Tail + 1) % KEYPAD_EFI_KEY_MAX_COUNT == Queue->Head) {
//
// If Queue is full, pop the one from head.
//
PopEfikeyBufHead (Queue, NULL);
PopEfikeyBufHead(Queue, NULL);
}
CopyMem (&Queue->Buffer[Queue->Tail], KeyData, sizeof (EFI_KEY_DATA));
CopyMem(&Queue->Buffer[Queue->Tail], KeyData, sizeof(EFI_KEY_DATA));
Queue->Tail = (Queue->Tail + 1) % KEYPAD_EFI_KEY_MAX_COUNT;
}
/**
Judge whether is a registed key
@param RegsiteredData A pointer to a buffer that is filled in with the keystroke
state data for the key that was registered.
@param InputData A pointer to a buffer that is filled in with the keystroke
state data for the key that was pressed.
@param RegsiteredData A pointer to a buffer that is filled in with the
keystroke state data for the key that was registered.
@param InputData A pointer to a buffer that is filled in with the
keystroke state data for the key that was pressed.
@retval TRUE Key be pressed matches a registered key.
@retval FLASE Match failed.
**/
BOOLEAN
IsKeyRegistered (
IN EFI_KEY_DATA *RegsiteredData,
IN EFI_KEY_DATA *InputData
)
IsKeyRegistered(IN EFI_KEY_DATA *RegsiteredData, IN EFI_KEY_DATA *InputData)
{
ASSERT (RegsiteredData != NULL && InputData != NULL);
ASSERT(RegsiteredData != NULL && InputData != NULL);
if ((RegsiteredData->Key.ScanCode != InputData->Key.ScanCode) ||
if ((RegsiteredData->Key.ScanCode != InputData->Key.ScanCode) ||
(RegsiteredData->Key.UnicodeChar != InputData->Key.UnicodeChar)) {
return FALSE;
}
//
// Assume KeyShiftState/KeyToggleState = 0 in Registered key data means these state could be ignored.
// Assume KeyShiftState/KeyToggleState = 0 in Registered key data means these
// state could be ignored.
//
if (RegsiteredData->KeyState.KeyShiftState != 0 &&
RegsiteredData->KeyState.KeyShiftState != InputData->KeyState.KeyShiftState) {
RegsiteredData->KeyState.KeyShiftState !=
InputData->KeyState.KeyShiftState) {
return FALSE;
}
if (RegsiteredData->KeyState.KeyToggleState != 0 &&
RegsiteredData->KeyState.KeyToggleState != InputData->KeyState.KeyToggleState) {
RegsiteredData->KeyState.KeyToggleState !=
InputData->KeyState.KeyToggleState) {
return FALSE;
}
return TRUE;
}
/**
@ -129,26 +118,24 @@ IsKeyRegistered (
be used to test for existance of a keystroke via WaitForEvent () call.
@param ConsoleInDev Keypad private structure
@param KeyData A pointer to a buffer that is filled in with the keystroke
state data for the key that was pressed.
@param KeyData A pointer to a buffer that is filled in with
the keystroke state data for the key that was pressed.
@retval EFI_SUCCESS The keystroke information was returned.
@retval EFI_NOT_READY There was no keystroke data availiable.
@retval EFI_DEVICE_ERROR The keystroke information was not returned due to
hardware errors.
@retval EFI_DEVICE_ERROR The keystroke information was not returned
due to hardware errors.
@retval EFI_INVALID_PARAMETER KeyData is NULL.
**/
EFI_STATUS
KeypadReadKeyStrokeWorker (
IN KEYPAD_CONSOLE_IN_DEV *ConsoleInDev,
OUT EFI_KEY_DATA *KeyData
)
KeypadReadKeyStrokeWorker(
IN KEYPAD_CONSOLE_IN_DEV *ConsoleInDev, OUT EFI_KEY_DATA *KeyData)
{
EFI_STATUS Status;
EFI_TPL OldTpl;
EFI_STATUS Status;
EFI_TPL OldTpl;
if (KeyData == NULL) {
return EFI_INVALID_PARAMETER;
@ -157,41 +144,42 @@ KeypadReadKeyStrokeWorker (
//
// Enter critical section
//
OldTpl = gBS->RaiseTPL (TPL_NOTIFY);
OldTpl = gBS->RaiseTPL(TPL_NOTIFY);
KeypadTimerHandler (NULL, ConsoleInDev);
KeypadTimerHandler(NULL, ConsoleInDev);
if (ConsoleInDev->KeypadErr) {
Status = EFI_DEVICE_ERROR;
} else {
Status = PopEfikeyBufHead (&ConsoleInDev->EfiKeyQueue, KeyData);
}
else {
Status = PopEfikeyBufHead(&ConsoleInDev->EfiKeyQueue, KeyData);
}
gBS->RestoreTPL (OldTpl);
gBS->RestoreTPL(OldTpl);
return Status;
}
/**
Perform 8042 controller and keypad initialization which implement SIMPLE_TEXT_IN.Reset()
Perform 8042 controller and keypad initialization which implement
SIMPLE_TEXT_IN.Reset()
@param This Pointer to instance of EFI_SIMPLE_TEXT_INPUT_PROTOCOL
@param This Pointer to instance of
EFI_SIMPLE_TEXT_INPUT_PROTOCOL
@param ExtendedVerification Indicate that the driver may perform a more
exhaustive verification operation of the device during
reset, now this par is ignored in this driver
exhaustive verification operation of the device
during reset, now this par is ignored in this driver
**/
EFI_STATUS
EFIAPI
KeypadEfiReset (
IN EFI_SIMPLE_TEXT_INPUT_PROTOCOL *This,
IN BOOLEAN ExtendedVerification
)
KeypadEfiReset(
IN EFI_SIMPLE_TEXT_INPUT_PROTOCOL *This, IN BOOLEAN ExtendedVerification)
{
EFI_STATUS Status;
KEYPAD_CONSOLE_IN_DEV *ConsoleIn;
EFI_TPL OldTpl;
EFI_STATUS Status;
KEYPAD_CONSOLE_IN_DEV *ConsoleIn;
EFI_TPL OldTpl;
ConsoleIn = KEYPAD_CONSOLE_IN_DEV_FROM_THIS (This);
ConsoleIn = KEYPAD_CONSOLE_IN_DEV_FROM_THIS(This);
if (ConsoleIn->KeypadErr) {
return EFI_DEVICE_ERROR;
}
@ -199,30 +187,31 @@ KeypadEfiReset (
//
// Enter critical section
//
OldTpl = gBS->RaiseTPL (TPL_NOTIFY);
OldTpl = gBS->RaiseTPL(TPL_NOTIFY);
//
// Call InitKeypad to initialize the keypad
//
Status = InitKeypad (ConsoleIn, ExtendedVerification);
if (EFI_ERROR (Status)) {
Status = InitKeypad(ConsoleIn, ExtendedVerification);
if (EFI_ERROR(Status)) {
//
// Leave critical section and return
//
gBS->RestoreTPL (OldTpl);
gBS->RestoreTPL(OldTpl);
return EFI_DEVICE_ERROR;
}
//
// Leave critical section and return
//
gBS->RestoreTPL (OldTpl);
gBS->RestoreTPL(OldTpl);
return EFI_SUCCESS;
}
/**
Retrieve key values for driver user which implement SIMPLE_TEXT_IN.ReadKeyStroke().
Retrieve key values for driver user which implement
SIMPLE_TEXT_IN.ReadKeyStroke().
@param This Pointer to instance of EFI_SIMPLE_TEXT_INPUT_PROTOCOL
@param Key The output buffer for key value
@ -231,16 +220,14 @@ KeypadEfiReset (
**/
EFI_STATUS
EFIAPI
KeypadReadKeyStroke (
IN EFI_SIMPLE_TEXT_INPUT_PROTOCOL *This,
OUT EFI_INPUT_KEY *Key
)
KeypadReadKeyStroke(
IN EFI_SIMPLE_TEXT_INPUT_PROTOCOL *This, OUT EFI_INPUT_KEY *Key)
{
EFI_STATUS Status;
KEYPAD_CONSOLE_IN_DEV *ConsoleIn;
EFI_KEY_DATA KeyData;
EFI_STATUS Status;
KEYPAD_CONSOLE_IN_DEV *ConsoleIn;
EFI_KEY_DATA KeyData;
ConsoleIn = KEYPAD_CONSOLE_IN_DEV_FROM_THIS (This);
ConsoleIn = KEYPAD_CONSOLE_IN_DEV_FROM_THIS(This);
//
// Considering if the partial keystroke is enabled, there maybe a partial
@ -251,29 +238,33 @@ KeypadReadKeyStroke (
//
// If there is no pending key, then return.
//
Status = KeypadReadKeyStrokeWorker (ConsoleIn, &KeyData);
if (EFI_ERROR (Status)) {
Status = KeypadReadKeyStrokeWorker(ConsoleIn, &KeyData);
if (EFI_ERROR(Status)) {
return Status;
}
//
// If it is partial keystroke, skip it.
//
if (KeyData.Key.ScanCode == SCAN_NULL && KeyData.Key.UnicodeChar == CHAR_NULL) {
if (KeyData.Key.ScanCode == SCAN_NULL &&
KeyData.Key.UnicodeChar == CHAR_NULL) {
continue;
}
//
// Translate the CTRL-Alpha characters to their corresponding control value
// (ctrl-a = 0x0001 through ctrl-Z = 0x001A)
//
if ((KeyData.KeyState.KeyShiftState & (EFI_LEFT_CONTROL_PRESSED | EFI_RIGHT_CONTROL_PRESSED)) != 0) {
if ((KeyData.KeyState.KeyShiftState &
(EFI_LEFT_CONTROL_PRESSED | EFI_RIGHT_CONTROL_PRESSED)) != 0) {
if (KeyData.Key.UnicodeChar >= L'a' && KeyData.Key.UnicodeChar <= L'z') {
KeyData.Key.UnicodeChar = (CHAR16) (KeyData.Key.UnicodeChar - L'a' + 1);
} else if (KeyData.Key.UnicodeChar >= L'A' && KeyData.Key.UnicodeChar <= L'Z') {
KeyData.Key.UnicodeChar = (CHAR16) (KeyData.Key.UnicodeChar - L'A' + 1);
KeyData.Key.UnicodeChar = (CHAR16)(KeyData.Key.UnicodeChar - L'a' + 1);
}
else if (
KeyData.Key.UnicodeChar >= L'A' && KeyData.Key.UnicodeChar <= L'Z') {
KeyData.Key.UnicodeChar = (CHAR16)(KeyData.Key.UnicodeChar - L'A' + 1);
}
}
CopyMem (Key, &KeyData.Key, sizeof (EFI_INPUT_KEY));
CopyMem(Key, &KeyData.Key, sizeof(EFI_INPUT_KEY));
return EFI_SUCCESS;
}
}
@ -286,25 +277,20 @@ KeypadReadKeyStroke (
@param Context waitting context
**/
VOID
EFIAPI
KeypadWaitForKey (
IN EFI_EVENT Event,
IN VOID *Context
)
VOID EFIAPI KeypadWaitForKey(IN EFI_EVENT Event, IN VOID *Context)
{
EFI_TPL OldTpl;
KEYPAD_CONSOLE_IN_DEV *ConsoleIn;
EFI_KEY_DATA KeyData;
EFI_TPL OldTpl;
KEYPAD_CONSOLE_IN_DEV *ConsoleIn;
EFI_KEY_DATA KeyData;
ConsoleIn = (KEYPAD_CONSOLE_IN_DEV *) Context;
ConsoleIn = (KEYPAD_CONSOLE_IN_DEV *)Context;
//
// Enter critical section
//
OldTpl = gBS->RaiseTPL (TPL_NOTIFY);
OldTpl = gBS->RaiseTPL(TPL_NOTIFY);
KeypadTimerHandler (NULL, ConsoleIn);
KeypadTimerHandler(NULL, ConsoleIn);
if (!ConsoleIn->KeypadErr) {
//
@ -313,46 +299,41 @@ KeypadWaitForKey (
// keystroke in the queue, so here skip the partial keystroke and get the
// next key from the queue
//
while (!IsEfikeyBufEmpty (&ConsoleIn->EfiKeyQueue)) {
CopyMem (
&KeyData,
&(ConsoleIn->EfiKeyQueue.Buffer[ConsoleIn->EfiKeyQueue.Head]),
sizeof (EFI_KEY_DATA)
);
if (KeyData.Key.ScanCode == SCAN_NULL && KeyData.Key.UnicodeChar == CHAR_NULL) {
PopEfikeyBufHead (&ConsoleIn->EfiKeyQueue, &KeyData);
while (!IsEfikeyBufEmpty(&ConsoleIn->EfiKeyQueue)) {
CopyMem(
&KeyData,
&(ConsoleIn->EfiKeyQueue.Buffer[ConsoleIn->EfiKeyQueue.Head]),
sizeof(EFI_KEY_DATA));
if (KeyData.Key.ScanCode == SCAN_NULL &&
KeyData.Key.UnicodeChar == CHAR_NULL) {
PopEfikeyBufHead(&ConsoleIn->EfiKeyQueue, &KeyData);
continue;
}
//
// if there is pending value key, signal the event.
//
gBS->SignalEvent (Event);
gBS->SignalEvent(Event);
break;
}
}
//
// Leave critical section and return
//
gBS->RestoreTPL (OldTpl);
gBS->RestoreTPL(OldTpl);
}
/**
Event notification function for SIMPLE_TEXT_INPUT_EX_PROTOCOL.WaitForKeyEx event
Signal the event if there is key available
Event notification function for SIMPLE_TEXT_INPUT_EX_PROTOCOL.WaitForKeyEx
event Signal the event if there is key available
@param Event event object
@param Context waiting context
**/
VOID
EFIAPI
KeypadWaitForKeyEx (
IN EFI_EVENT Event,
IN VOID *Context
)
VOID EFIAPI KeypadWaitForKeyEx(IN EFI_EVENT Event, IN VOID *Context)
{
KeypadWaitForKey (Event, Context);
KeypadWaitForKey(Event, Context);
}
/**
@ -362,26 +343,21 @@ KeypadWaitForKeyEx (
@param ExtendedVerification Driver may perform diagnostics on reset.
@retval EFI_SUCCESS The device was reset.
@retval EFI_DEVICE_ERROR The device is not functioning properly and could
not be reset.
@retval EFI_DEVICE_ERROR The device is not functioning properly and
could not be reset.
**/
EFI_STATUS
EFIAPI
KeypadEfiResetEx (
IN EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL *This,
IN BOOLEAN ExtendedVerification
)
KeypadEfiResetEx(
IN EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL *This, IN BOOLEAN ExtendedVerification)
{
KEYPAD_CONSOLE_IN_DEV *ConsoleInDev;
KEYPAD_CONSOLE_IN_DEV *ConsoleInDev;
ConsoleInDev = TEXT_INPUT_EX_KEYPAD_CONSOLE_IN_DEV_FROM_THIS (This);
ConsoleInDev = TEXT_INPUT_EX_KEYPAD_CONSOLE_IN_DEV_FROM_THIS(This);
return ConsoleInDev->ConIn.Reset (
&ConsoleInDev->ConIn,
ExtendedVerification
);
return ConsoleInDev->ConIn.Reset(&ConsoleInDev->ConIn, ExtendedVerification);
}
/**
@ -390,32 +366,30 @@ KeypadEfiResetEx (
@param This Protocol instance pointer.
@param KeyData A pointer to a buffer that is filled in with the keystroke
state data for the key that was pressed.
@param KeyData A pointer to a buffer that is filled in with the
keystroke state data for the key that was pressed.
@retval EFI_SUCCESS The keystroke information was returned.
@retval EFI_NOT_READY There was no keystroke data availiable.
@retval EFI_DEVICE_ERROR The keystroke information was not returned due to
hardware errors.
@retval EFI_DEVICE_ERROR The keystroke information was not returned due
to hardware errors.
@retval EFI_INVALID_PARAMETER KeyData is NULL.
**/
EFI_STATUS
EFIAPI
KeypadReadKeyStrokeEx (
IN EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL *This,
OUT EFI_KEY_DATA *KeyData
)
KeypadReadKeyStrokeEx(
IN EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL *This, OUT EFI_KEY_DATA *KeyData)
{
KEYPAD_CONSOLE_IN_DEV *ConsoleInDev;
KEYPAD_CONSOLE_IN_DEV *ConsoleInDev;
if (KeyData == NULL) {
return EFI_INVALID_PARAMETER;
}
ConsoleInDev = TEXT_INPUT_EX_KEYPAD_CONSOLE_IN_DEV_FROM_THIS (This);
return KeypadReadKeyStrokeWorker (ConsoleInDev, KeyData);
ConsoleInDev = TEXT_INPUT_EX_KEYPAD_CONSOLE_IN_DEV_FROM_THIS(This);
return KeypadReadKeyStrokeWorker(ConsoleInDev, KeyData);
}
/**
@ -426,34 +400,34 @@ KeypadReadKeyStrokeEx (
state for the input device.
@retval EFI_SUCCESS The device state was set successfully.
@retval EFI_DEVICE_ERROR The device is not functioning correctly and could
not have the setting adjusted.
@retval EFI_UNSUPPORTED The device does not have the ability to set its state.
@retval EFI_DEVICE_ERROR The device is not functioning correctly and
could not have the setting adjusted.
@retval EFI_UNSUPPORTED The device does not have the ability to set its
state.
@retval EFI_INVALID_PARAMETER KeyToggleState is NULL.
**/
EFI_STATUS
EFIAPI
KeypadSetState (
IN EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL *This,
IN EFI_KEY_TOGGLE_STATE *KeyToggleState
)
KeypadSetState(
IN EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL *This,
IN EFI_KEY_TOGGLE_STATE *KeyToggleState)
{
EFI_STATUS Status;
KEYPAD_CONSOLE_IN_DEV *ConsoleInDev;
EFI_TPL OldTpl;
EFI_STATUS Status;
KEYPAD_CONSOLE_IN_DEV *ConsoleInDev;
EFI_TPL OldTpl;
if (KeyToggleState == NULL) {
return EFI_INVALID_PARAMETER;
}
ConsoleInDev = TEXT_INPUT_EX_KEYPAD_CONSOLE_IN_DEV_FROM_THIS (This);
ConsoleInDev = TEXT_INPUT_EX_KEYPAD_CONSOLE_IN_DEV_FROM_THIS(This);
//
// Enter critical section
//
OldTpl = gBS->RaiseTPL (TPL_NOTIFY);
OldTpl = gBS->RaiseTPL(TPL_NOTIFY);
if (ConsoleInDev->KeypadErr) {
Status = EFI_DEVICE_ERROR;
@ -490,68 +464,69 @@ Exit:
//
// Leave critical section and return
//
gBS->RestoreTPL (OldTpl);
gBS->RestoreTPL(OldTpl);
return Status;
}
/**
Register a notification function for a particular keystroke for the input device.
Register a notification function for a particular keystroke for the input
device.
@param This Protocol instance pointer.
@param KeyData A pointer to a buffer that is filled in with the keystroke
information data for the key that was pressed.
@param KeyNotificationFunction Points to the function to be called when the key
sequence is typed specified by KeyData.
@param NotifyHandle Points to the unique handle assigned to the registered notification.
@param KeyData A pointer to a buffer that is filled in
with the keystroke information data for the key that was pressed.
@param KeyNotificationFunction Points to the function to be called when
the key sequence is typed specified by KeyData.
@param NotifyHandle Points to the unique handle assigned to
the registered notification.
@retval EFI_SUCCESS The notification function was registered successfully.
@retval EFI_OUT_OF_RESOURCES Unable to allocate resources for necesssary data structures.
@retval EFI_INVALID_PARAMETER KeyData or NotifyHandle or KeyNotificationFunction is NULL.
@retval EFI_SUCCESS The notification function was registered
successfully.
@retval EFI_OUT_OF_RESOURCES Unable to allocate resources for
necesssary data structures.
@retval EFI_INVALID_PARAMETER KeyData or NotifyHandle or
KeyNotificationFunction is NULL.
**/
EFI_STATUS
EFIAPI
KeypadRegisterKeyNotify (
IN EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL *This,
IN EFI_KEY_DATA *KeyData,
IN EFI_KEY_NOTIFY_FUNCTION KeyNotificationFunction,
OUT VOID **NotifyHandle
)
KeypadRegisterKeyNotify(
IN EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL *This, IN EFI_KEY_DATA *KeyData,
IN EFI_KEY_NOTIFY_FUNCTION KeyNotificationFunction, OUT VOID **NotifyHandle)
{
EFI_STATUS Status;
KEYPAD_CONSOLE_IN_DEV *ConsoleInDev;
EFI_TPL OldTpl;
LIST_ENTRY *Link;
KEYPAD_CONSOLE_IN_EX_NOTIFY *CurrentNotify;
KEYPAD_CONSOLE_IN_EX_NOTIFY *NewNotify;
EFI_STATUS Status;
KEYPAD_CONSOLE_IN_DEV * ConsoleInDev;
EFI_TPL OldTpl;
LIST_ENTRY * Link;
KEYPAD_CONSOLE_IN_EX_NOTIFY *CurrentNotify;
KEYPAD_CONSOLE_IN_EX_NOTIFY *NewNotify;
if (KeyData == NULL || NotifyHandle == NULL || KeyNotificationFunction == NULL) {
if (KeyData == NULL || NotifyHandle == NULL ||
KeyNotificationFunction == NULL) {
return EFI_INVALID_PARAMETER;
}
ConsoleInDev = TEXT_INPUT_EX_KEYPAD_CONSOLE_IN_DEV_FROM_THIS (This);
ConsoleInDev = TEXT_INPUT_EX_KEYPAD_CONSOLE_IN_DEV_FROM_THIS(This);
//
// Enter critical section
//
OldTpl = gBS->RaiseTPL (TPL_NOTIFY);
OldTpl = gBS->RaiseTPL(TPL_NOTIFY);
//
// Return EFI_SUCCESS if the (KeyData, NotificationFunction) is already registered.
// Return EFI_SUCCESS if the (KeyData, NotificationFunction) is already
// registered.
//
for (Link = ConsoleInDev->NotifyList.ForwardLink; Link != &ConsoleInDev->NotifyList; Link = Link->ForwardLink) {
CurrentNotify = CR (
Link,
KEYPAD_CONSOLE_IN_EX_NOTIFY,
NotifyEntry,
KEYPAD_CONSOLE_IN_EX_NOTIFY_SIGNATURE
);
if (IsKeyRegistered (&CurrentNotify->KeyData, KeyData)) {
for (Link = ConsoleInDev->NotifyList.ForwardLink;
Link != &ConsoleInDev->NotifyList; Link = Link->ForwardLink) {
CurrentNotify =
CR(Link, KEYPAD_CONSOLE_IN_EX_NOTIFY, NotifyEntry,
KEYPAD_CONSOLE_IN_EX_NOTIFY_SIGNATURE);
if (IsKeyRegistered(&CurrentNotify->KeyData, KeyData)) {
if (CurrentNotify->KeyNotificationFn == KeyNotificationFunction) {
*NotifyHandle = CurrentNotify;
Status = EFI_SUCCESS;
Status = EFI_SUCCESS;
goto Exit;
}
}
@ -560,7 +535,8 @@ KeypadRegisterKeyNotify (
//
// Allocate resource to save the notification function
//
NewNotify = (KEYPAD_CONSOLE_IN_EX_NOTIFY *) AllocateZeroPool (sizeof (KEYPAD_CONSOLE_IN_EX_NOTIFY));
NewNotify = (KEYPAD_CONSOLE_IN_EX_NOTIFY *)AllocateZeroPool(
sizeof(KEYPAD_CONSOLE_IN_EX_NOTIFY));
if (NewNotify == NULL) {
Status = EFI_OUT_OF_RESOURCES;
goto Exit;
@ -568,70 +544,67 @@ KeypadRegisterKeyNotify (
NewNotify->Signature = KEYPAD_CONSOLE_IN_EX_NOTIFY_SIGNATURE;
NewNotify->KeyNotificationFn = KeyNotificationFunction;
CopyMem (&NewNotify->KeyData, KeyData, sizeof (EFI_KEY_DATA));
InsertTailList (&ConsoleInDev->NotifyList, &NewNotify->NotifyEntry);
CopyMem(&NewNotify->KeyData, KeyData, sizeof(EFI_KEY_DATA));
InsertTailList(&ConsoleInDev->NotifyList, &NewNotify->NotifyEntry);
*NotifyHandle = NewNotify;
Status = EFI_SUCCESS;
*NotifyHandle = NewNotify;
Status = EFI_SUCCESS;
Exit:
//
// Leave critical section and return
//
gBS->RestoreTPL (OldTpl);
gBS->RestoreTPL(OldTpl);
return Status;
}
/**
Remove a registered notification function from a particular keystroke.
@param This Protocol instance pointer.
@param NotificationHandle The handle of the notification function being unregistered.
@param NotificationHandle The handle of the notification function
being unregistered.
@retval EFI_SUCCESS The notification function was unregistered successfully.
@retval EFI_SUCCESS The notification function was unregistered
successfully.
@retval EFI_INVALID_PARAMETER The NotificationHandle is invalid.
**/
EFI_STATUS
EFIAPI
KeypadUnregisterKeyNotify (
IN EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL *This,
IN VOID *NotificationHandle
)
KeypadUnregisterKeyNotify(
IN EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL *This, IN VOID *NotificationHandle)
{
EFI_STATUS Status;
KEYPAD_CONSOLE_IN_DEV *ConsoleInDev;
EFI_TPL OldTpl;
LIST_ENTRY *Link;
KEYPAD_CONSOLE_IN_EX_NOTIFY *CurrentNotify;
EFI_STATUS Status;
KEYPAD_CONSOLE_IN_DEV * ConsoleInDev;
EFI_TPL OldTpl;
LIST_ENTRY * Link;
KEYPAD_CONSOLE_IN_EX_NOTIFY *CurrentNotify;
if (NotificationHandle == NULL) {
return EFI_INVALID_PARAMETER;
}
ConsoleInDev = TEXT_INPUT_EX_KEYPAD_CONSOLE_IN_DEV_FROM_THIS (This);
ConsoleInDev = TEXT_INPUT_EX_KEYPAD_CONSOLE_IN_DEV_FROM_THIS(This);
//
// Enter critical section
//
OldTpl = gBS->RaiseTPL (TPL_NOTIFY);
OldTpl = gBS->RaiseTPL(TPL_NOTIFY);
for (Link = ConsoleInDev->NotifyList.ForwardLink; Link != &ConsoleInDev->NotifyList; Link = Link->ForwardLink) {
CurrentNotify = CR (
Link,
KEYPAD_CONSOLE_IN_EX_NOTIFY,
NotifyEntry,
KEYPAD_CONSOLE_IN_EX_NOTIFY_SIGNATURE
);
for (Link = ConsoleInDev->NotifyList.ForwardLink;
Link != &ConsoleInDev->NotifyList; Link = Link->ForwardLink) {
CurrentNotify =
CR(Link, KEYPAD_CONSOLE_IN_EX_NOTIFY, NotifyEntry,
KEYPAD_CONSOLE_IN_EX_NOTIFY_SIGNATURE);
if (CurrentNotify == NotificationHandle) {
//
// Remove the notification function from NotifyList and free resources
//
RemoveEntryList (&CurrentNotify->NotifyEntry);
RemoveEntryList(&CurrentNotify->NotifyEntry);
gBS->FreePool (CurrentNotify);
gBS->FreePool(CurrentNotify);
Status = EFI_SUCCESS;
goto Exit;
}
@ -645,7 +618,7 @@ Exit:
//
// Leave critical section and return
//
gBS->RestoreTPL (OldTpl);
gBS->RestoreTPL(OldTpl);
return Status;
}
@ -655,22 +628,17 @@ Exit:
@param Event Indicates the event that invoke this function.
@param Context Indicates the calling context.
**/
VOID
EFIAPI
KeyNotifyProcessHandler (
IN EFI_EVENT Event,
IN VOID *Context
)
VOID EFIAPI KeyNotifyProcessHandler(IN EFI_EVENT Event, IN VOID *Context)
{
EFI_STATUS Status;
KEYPAD_CONSOLE_IN_DEV *ConsoleIn;
EFI_KEY_DATA KeyData;
LIST_ENTRY *Link;
LIST_ENTRY *NotifyList;
KEYPAD_CONSOLE_IN_EX_NOTIFY *CurrentNotify;
EFI_TPL OldTpl;
EFI_STATUS Status;
KEYPAD_CONSOLE_IN_DEV * ConsoleIn;
EFI_KEY_DATA KeyData;
LIST_ENTRY * Link;
LIST_ENTRY * NotifyList;
KEYPAD_CONSOLE_IN_EX_NOTIFY *CurrentNotify;
EFI_TPL OldTpl;
ConsoleIn = (KEYPAD_CONSOLE_IN_DEV *) Context;
ConsoleIn = (KEYPAD_CONSOLE_IN_DEV *)Context;
//
// Invoke notification functions.
@ -679,22 +647,24 @@ KeyNotifyProcessHandler (
while (TRUE) {
//
// Enter critical section
//
OldTpl = gBS->RaiseTPL (TPL_NOTIFY);
Status = PopEfikeyBufHead (&ConsoleIn->EfiKeyQueueForNotify, &KeyData);
//
OldTpl = gBS->RaiseTPL(TPL_NOTIFY);
Status = PopEfikeyBufHead(&ConsoleIn->EfiKeyQueueForNotify, &KeyData);
//
// Leave critical section
//
gBS->RestoreTPL (OldTpl);
if (EFI_ERROR (Status)) {
gBS->RestoreTPL(OldTpl);
if (EFI_ERROR(Status)) {
break;
}
for (Link = GetFirstNode (NotifyList); !IsNull (NotifyList, Link); Link = GetNextNode (NotifyList, Link)) {
CurrentNotify = CR (Link, KEYPAD_CONSOLE_IN_EX_NOTIFY, NotifyEntry, KEYPAD_CONSOLE_IN_EX_NOTIFY_SIGNATURE);
if (IsKeyRegistered (&CurrentNotify->KeyData, &KeyData)) {
CurrentNotify->KeyNotificationFn (&KeyData);
for (Link = GetFirstNode(NotifyList); !IsNull(NotifyList, Link);
Link = GetNextNode(NotifyList, Link)) {
CurrentNotify =
CR(Link, KEYPAD_CONSOLE_IN_EX_NOTIFY, NotifyEntry,
KEYPAD_CONSOLE_IN_EX_NOTIFY_SIGNATURE);
if (IsKeyRegistered(&CurrentNotify->KeyData, &KeyData)) {
CurrentNotify->KeyNotificationFn(&KeyData);
}
}
}
}

View File

@ -16,143 +16,139 @@
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/
*/
#include "crc32.h"
#include <Library/UefiLib.h>
EFI_STATUS FixGptCRC32(EFI_BLOCK_IO_PROTOCOL *mBlockIoProtocol,
EFI_DISK_IO_PROTOCOL *mDiskIoProtocol,
EFI_SYSTEM_TABLE *mSystemTable){
EFI_STATUS status;
UINT32 mMediaId;
UINT32 mBlockSize;
mMediaId = mBlockIoProtocol->Media->MediaId;
mBlockSize = mBlockIoProtocol->Media->BlockSize;
unsigned char crc32_header[GPT_CRC32_LEN];
unsigned char crc32_entry[GPT_CRC32_LEN];
unsigned char *bufGptHeader;
unsigned char *bufGptEntry;
// try to allocate pool for bufGptEntry
status = mSystemTable->BootServices->AllocatePool(EfiBootServicesCode, GPT_ENTRY_COUNT * mBlockSize, (VOID**)&bufGptEntry);
if (EFI_ERROR(status)) {
return status;
}
// read gpt entry list
status = mDiskIoProtocol->ReadDisk(mDiskIoProtocol,
mMediaId,
2 * mBlockSize,
GPT_ENTRY_COUNT * mBlockSize,
bufGptEntry);
EFI_STATUS FixGptCRC32(
EFI_BLOCK_IO_PROTOCOL *mBlockIoProtocol,
EFI_DISK_IO_PROTOCOL *mDiskIoProtocol, EFI_SYSTEM_TABLE *mSystemTable)
{
EFI_STATUS status;
UINT32 mMediaId;
UINT32 mBlockSize;
mMediaId = mBlockIoProtocol->Media->MediaId;
mBlockSize = mBlockIoProtocol->Media->BlockSize;
unsigned char crc32_header[GPT_CRC32_LEN];
unsigned char crc32_entry[GPT_CRC32_LEN];
unsigned char *bufGptHeader;
unsigned char *bufGptEntry;
// try to allocate pool for bufGptEntry
status = mSystemTable->BootServices->AllocatePool(
EfiBootServicesCode, GPT_ENTRY_COUNT * mBlockSize, (VOID **)&bufGptEntry);
if (EFI_ERROR(status)) {
return status;
}
// read gpt entry list
status = mDiskIoProtocol->ReadDisk(
mDiskIoProtocol, mMediaId, 2 * mBlockSize, GPT_ENTRY_COUNT * mBlockSize,
bufGptEntry);
if (EFI_ERROR(status))
return status;
// get gpt entry crc32 value
get_result_array(calculate_crc32(bufGptEntry, GPT_ENTRY_COUNT * mBlockSize), crc32_entry);
// write gpt entry crc32 value to disk
status = mDiskIoProtocol->WriteDisk(mDiskIoProtocol,
mMediaId,
mBlockSize + GPT_ENTRY_CRC32_LBA1_OFFSET,
GPT_CRC32_LEN,
crc32_entry);
if (EFI_ERROR(status))
return status;
// try to release bufGptEntry
status = mSystemTable->BootServices->FreePool(bufGptEntry);
if (EFI_ERROR(status)) {
return status;
}
// try to allocate pool for bufGptHeader
status = mSystemTable->BootServices->AllocatePool(EfiBootServicesCode, GPT_HEADER_SIZE, (VOID**)&bufGptHeader);
// get gpt header
status = mDiskIoProtocol->ReadDisk(mDiskIoProtocol,
mMediaId,
mBlockSize,
GPT_HEADER_SIZE,
bufGptHeader);
if (EFI_ERROR(status))
return status;
// set previous crc32 value to 0x00
for (int i = GPT_HEADER_CRC32_LBA1_OFFSET; i < GPT_HEADER_CRC32_LBA1_OFFSET + GPT_CRC32_LEN; i++) {
bufGptHeader[i] = 0x00;
}
// get gpt header crc32 value
get_result_array(calculate_crc32(bufGptHeader, GPT_HEADER_SIZE), crc32_header);
// write gpt header crc32 value to disk
status = mDiskIoProtocol->WriteDisk(mDiskIoProtocol,
mMediaId,
mBlockSize + GPT_HEADER_CRC32_LBA1_OFFSET,
GPT_CRC32_LEN,
crc32_header);
if (EFI_ERROR(status))
return status;
// try to release bufGptHeader
status = mSystemTable->BootServices->FreePool(bufGptHeader);
if (EFI_ERROR(status)) {
return status;
}
return EFI_SUCCESS;
if (EFI_ERROR(status))
return status;
// get gpt entry crc32 value
get_result_array(
calculate_crc32(bufGptEntry, GPT_ENTRY_COUNT * mBlockSize), crc32_entry);
// write gpt entry crc32 value to disk
status = mDiskIoProtocol->WriteDisk(
mDiskIoProtocol, mMediaId, mBlockSize + GPT_ENTRY_CRC32_LBA1_OFFSET,
GPT_CRC32_LEN, crc32_entry);
if (EFI_ERROR(status))
return status;
// try to release bufGptEntry
status = mSystemTable->BootServices->FreePool(bufGptEntry);
if (EFI_ERROR(status)) {
return status;
}
// try to allocate pool for bufGptHeader
status = mSystemTable->BootServices->AllocatePool(
EfiBootServicesCode, GPT_HEADER_SIZE, (VOID **)&bufGptHeader);
// get gpt header
status = mDiskIoProtocol->ReadDisk(
mDiskIoProtocol, mMediaId, mBlockSize, GPT_HEADER_SIZE, bufGptHeader);
if (EFI_ERROR(status))
return status;
// set previous crc32 value to 0x00
for (int i = GPT_HEADER_CRC32_LBA1_OFFSET;
i < GPT_HEADER_CRC32_LBA1_OFFSET + GPT_CRC32_LEN; i++) {
bufGptHeader[i] = 0x00;
}
// get gpt header crc32 value
get_result_array(
calculate_crc32(bufGptHeader, GPT_HEADER_SIZE), crc32_header);
// write gpt header crc32 value to disk
status = mDiskIoProtocol->WriteDisk(
mDiskIoProtocol, mMediaId, mBlockSize + GPT_HEADER_CRC32_LBA1_OFFSET,
GPT_CRC32_LEN, crc32_header);
if (EFI_ERROR(status))
return status;
// try to release bufGptHeader
status = mSystemTable->BootServices->FreePool(bufGptHeader);
if (EFI_ERROR(status)) {
return status;
}
return EFI_SUCCESS;
}
/*
* A8h reflected is 15h, i.e. 10101000 <--> 00010101
*/
* A8h reflected is 15h, i.e. 10101000 <--> 00010101
*/
int reflect(int data, int len)
{
int ref = 0;
for (int i = 0; i < len; i++) {
if (data & 0x1) {
ref |= (1 << ((len - 1) - i));
}
data = (data >> 1);
}
return ref;
int ref = 0;
for (int i = 0; i < len; i++) {
if (data & 0x1) {
ref |= (1 << ((len - 1) - i));
}
data = (data >> 1);
}
return ref;
}
/*
* Function to calculate the CRC32
*/
* Function to calculate the CRC32
*/
unsigned int calculate_crc32(unsigned char *buffer, int len)
{
int byte_length = 8; /*length of unit (i.e. byte) */
int msb = 0;
int polynomial = 0x04C11DB7; /* IEEE 32bit polynomial */
unsigned int regs = 0xFFFFFFFF; /* init to all ones */
int regs_mask = 0xFFFFFFFF; /* ensure only 32 bit answer */
int regs_msb = 0;
unsigned int reflected_regs;
for (int i = 0; i < len; i++) {
int data_byte = buffer[i];
data_byte = reflect(data_byte, 8);
for (int j = 0; j < byte_length; j++) {
msb = data_byte >> (byte_length - 1); /* get MSB */
msb &= 1; /* ensure just 1 bit */
regs_msb = (regs >> 31) & 1; /* MSB of regs */
regs = regs << 1; /* shift regs for CRC-CCITT */
if (regs_msb ^ msb) { /* MSB is a 1 */
regs = regs ^ polynomial; /* XOR with generator poly */
}
regs = regs & regs_mask; /* Mask off excess upper bits */
data_byte <<= 1; /* get to next bit */
}
}
regs = regs & regs_mask;
reflected_regs = reflect(regs, 32) ^ 0xFFFFFFFF;
return reflected_regs;
int byte_length = 8; /*length of unit (i.e. byte) */
int msb = 0;
int polynomial = 0x04C11DB7; /* IEEE 32bit polynomial */
unsigned int regs = 0xFFFFFFFF; /* init to all ones */
int regs_mask = 0xFFFFFFFF; /* ensure only 32 bit answer */
int regs_msb = 0;
unsigned int reflected_regs;
for (int i = 0; i < len; i++) {
int data_byte = buffer[i];
data_byte = reflect(data_byte, 8);
for (int j = 0; j < byte_length; j++) {
msb = data_byte >> (byte_length - 1); /* get MSB */
msb &= 1; /* ensure just 1 bit */
regs_msb = (regs >> 31) & 1; /* MSB of regs */
regs = regs << 1; /* shift regs for CRC-CCITT */
if (regs_msb ^ msb) { /* MSB is a 1 */
regs = regs ^ polynomial; /* XOR with generator poly */
}
regs = regs & regs_mask; /* Mask off excess upper bits */
data_byte <<= 1; /* get to next bit */
}
}
regs = regs & regs_mask;
reflected_regs = reflect(regs, 32) ^ 0xFFFFFFFF;
return reflected_regs;
}
// Convert Function
//unsigned char** convert(unsigned int reflected_regs, int *size)
void get_result_array(unsigned int reflected_regs, unsigned char * res)
// unsigned char** convert(unsigned int reflected_regs, int *size)
void get_result_array(unsigned int reflected_regs, unsigned char *res)
{
for (int i = 0; i < 4; i++) {
res[i] = reflected_regs & 0xff;
reflected_regs >>= 8;
}
for (int i = 0; i < 4; i++) {
res[i] = reflected_regs & 0xff;
reflected_regs >>= 8;
}
}

View File

@ -32,8 +32,9 @@
int reflect(int, int);
unsigned int calculate_crc32(unsigned char*, int);
unsigned int calculate_crc32(unsigned char *, int);
void get_result_array(unsigned int, unsigned char*);
void get_result_array(unsigned int, unsigned char *);
EFI_STATUS FixGptCRC32(EFI_BLOCK_IO_PROTOCOL*, EFI_DISK_IO_PROTOCOL*, EFI_SYSTEM_TABLE*);
EFI_STATUS FixGptCRC32(
EFI_BLOCK_IO_PROTOCOL *, EFI_DISK_IO_PROTOCOL *, EFI_SYSTEM_TABLE *);

View File

@ -16,153 +16,147 @@
* along with this program. If not, see <https://www.gnu.org/licenses/
*/
#include <Uefi.h>
#include <Library/UefiLib.h>
#include <Protocol/DiskIo.h>
#include <Protocol/BlockIo.h>
#include "slot.h"
#include "crc32.h"
#include <Library/UefiLib.h>
#include <Protocol/BlockIo.h>
#include <Protocol/DiskIo.h>
#include <Uefi.h>
void WaitAnyKey(EFI_SYSTEM_TABLE *mSystemTable);
EFI_STATUS EFIAPI SlotMain(IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable)
EFI_STATUS EFIAPI
SlotMain(IN EFI_HANDLE ImageHandle, IN EFI_SYSTEM_TABLE *SystemTable)
{
EFI_STATUS status;
EFI_HANDLE *controllerHandles = NULL;
UINTN handleIndex, numHandles;
EFI_DISK_IO_PROTOCOL *mDiskIoProtocol = NULL;
EFI_BLOCK_IO_PROTOCOL *mBlockIoProtocol = NULL;
UINT32 mMediaId;
UINT32 mBlockSize;
int index;
unsigned char currentSlotA[OP6T_SLOT_FLAG_SIZE];
unsigned char currentSlotB[OP6T_SLOT_FLAG_SIZE];
// list all Handles that installed DiskIoProtocol
status = SystemTable->BootServices->LocateHandleBuffer(ByProtocol,
&gEfiDiskIoProtocolGuid,
NULL,
&numHandles,
&controllerHandles);
EFI_STATUS status;
EFI_HANDLE * controllerHandles = NULL;
UINTN handleIndex, numHandles;
EFI_DISK_IO_PROTOCOL * mDiskIoProtocol = NULL;
EFI_BLOCK_IO_PROTOCOL *mBlockIoProtocol = NULL;
UINT32 mMediaId;
UINT32 mBlockSize;
int index;
unsigned char currentSlotA[OP6T_SLOT_FLAG_SIZE];
unsigned char currentSlotB[OP6T_SLOT_FLAG_SIZE];
// list all Handles that installed DiskIoProtocol
status = SystemTable->BootServices->LocateHandleBuffer(
ByProtocol, &gEfiDiskIoProtocolGuid, NULL, &numHandles,
&controllerHandles);
if (EFI_ERROR(status)) {
// WaitAnyKey(SystemTable);
return status;
}
// ergodic the handles
for (handleIndex = 0; handleIndex < numHandles; handleIndex++) {
// open DiskIoProtocol on target handle
status = SystemTable->BootServices->HandleProtocol(
controllerHandles[handleIndex], &gEfiDiskIoProtocolGuid,
(VOID **)&mDiskIoProtocol);
unsigned char slotNameBuffer[OP6T_SLOT_BOOT_BUFFER_LEN];
if (EFI_ERROR(status))
continue;
// open BlockIoProtocol on target handle
status = SystemTable->BootServices->HandleProtocol(
controllerHandles[handleIndex], &gEfiBlockIoProtocolGuid,
(VOID **)&mBlockIoProtocol);
if (EFI_ERROR(status)) {
//WaitAnyKey(SystemTable);
return status;
continue;
}
// ergodic the handles
for (handleIndex = 0; handleIndex < numHandles; handleIndex++) {
// open DiskIoProtocol on target handle
status = SystemTable->BootServices->HandleProtocol(
controllerHandles[handleIndex],
&gEfiDiskIoProtocolGuid,
(VOID**)&mDiskIoProtocol);
unsigned char slotNameBuffer[OP6T_SLOT_BOOT_BUFFER_LEN];
if (EFI_ERROR(status))
continue;
// open BlockIoProtocol on target handle
status = SystemTable->BootServices->HandleProtocol(
controllerHandles[handleIndex],
&gEfiBlockIoProtocolGuid,
(VOID**)&mBlockIoProtocol);
if (EFI_ERROR(status)) {
continue;
} else {
// filter disk device by LogicalPartition
if (mBlockIoProtocol->Media->LogicalPartition)
continue;
SystemTable->ConOut->OutputString(SystemTable->ConOut, L"The media is disk.\n");
mMediaId = mBlockIoProtocol->Media->MediaId;
mBlockSize = mBlockIoProtocol->Media->BlockSize;
// read buffers from disk
status = mDiskIoProtocol->ReadDisk(
mDiskIoProtocol,
mMediaId,
2 * mBlockSize + OP6T_SLOT_A_BOOT_BUFFER_LBA2_OFFSET,
OP6T_SLOT_BOOT_BUFFER_LEN,
slotNameBuffer);
if (EFI_ERROR(status))
continue;
// filter disk device by the name of boot partition
int i = 0;
for (index = 0; index < OP6T_SLOT_BOOT_BUFFER_LEN; index++) {
if (slotNameBuffer[index] != OP6T_SLOT_A_BOOT_BUFFER[index]) {
i = 1;
break;
}
}
if (i == 1)
continue;
SystemTable->ConOut->OutputString(SystemTable->ConOut, L"The name of target partition is matched.\n");
// read flag of slot A
status = mDiskIoProtocol->ReadDisk(
mDiskIoProtocol,
mMediaId,
2 * mBlockSize + OP6T_SLOT_A_BOOT_FLAG_LBA2_OFFSET,
OP6T_SLOT_FLAG_SIZE,
currentSlotA);
if (EFI_ERROR(status))
return status;
// read flag of slot B
status = mDiskIoProtocol->ReadDisk(
mDiskIoProtocol,
mMediaId,
3 * mBlockSize + OP6T_SLOT_B_BOOT_FLAG_LBA3_OFFSET,
OP6T_SLOT_FLAG_SIZE,
currentSlotB);
if (EFI_ERROR(status))
return status;
// analyze A/B flags
int flag_offset = 0;
if (currentSlotA[0] == OP6T_SLOT_FLAG_ACTIVE)
return EFI_SUCCESS;
else if (currentSlotA[0] == OP6T_SLOT_FLAG_UNBOOTABLE)
if (currentSlotB[0] == OP6T_SLOT_FLAG_ACTIVE)
return EFI_SUCCESS;
else if (currentSlotB[0] == OP6T_SLOT_FLAG_UNBOOTABLE)
flag_offset = 2 * mBlockSize + OP6T_SLOT_A_BOOT_FLAG_LBA2_OFFSET;
else
flag_offset = 3 * mBlockSize + OP6T_SLOT_B_BOOT_FLAG_LBA3_OFFSET;
else
flag_offset = 2 * mBlockSize + OP6T_SLOT_A_BOOT_FLAG_LBA2_OFFSET;
// write flag into disk
unsigned char f[1] = {OP6T_SLOT_FLAG_ACTIVE};
status = mDiskIoProtocol->WriteDisk(
mDiskIoProtocol,
mMediaId,
flag_offset,
OP6T_SLOT_FLAG_SIZE,
f);
if (EFI_ERROR(status)) {
SystemTable->ConOut->OutputString(SystemTable->ConOut, L"Failed to write flag into disk.\n");
continue;
} else {
SystemTable->ConOut->OutputString(SystemTable->ConOut, L"Succeed to write flag into disk.\n");
break;
}
else {
// filter disk device by LogicalPartition
if (mBlockIoProtocol->Media->LogicalPartition)
continue;
SystemTable->ConOut->OutputString(
SystemTable->ConOut, L"The media is disk.\n");
mMediaId = mBlockIoProtocol->Media->MediaId;
mBlockSize = mBlockIoProtocol->Media->BlockSize;
// read buffers from disk
status = mDiskIoProtocol->ReadDisk(
mDiskIoProtocol, mMediaId,
2 * mBlockSize + OP6T_SLOT_A_BOOT_BUFFER_LBA2_OFFSET,
OP6T_SLOT_BOOT_BUFFER_LEN, slotNameBuffer);
if (EFI_ERROR(status))
continue;
// filter disk device by the name of boot partition
int i = 0;
for (index = 0; index < OP6T_SLOT_BOOT_BUFFER_LEN; index++) {
if (slotNameBuffer[index] != OP6T_SLOT_A_BOOT_BUFFER[index]) {
i = 1;
break;
}
}
//try to fix gpt crc32
if (mBlockIoProtocol != NULL) {
status = (FixGptCRC32(mBlockIoProtocol, mDiskIoProtocol, SystemTable));
if (EFI_ERROR(status))
SystemTable->ConOut->OutputString(SystemTable->ConOut, L"Failed to fix CRC32 value.\n");
}
if (i == 1)
continue;
SystemTable->ConOut->OutputString(
SystemTable->ConOut, L"The name of target partition is matched.\n");
// read flag of slot A
status = mDiskIoProtocol->ReadDisk(
mDiskIoProtocol, mMediaId,
2 * mBlockSize + OP6T_SLOT_A_BOOT_FLAG_LBA2_OFFSET,
OP6T_SLOT_FLAG_SIZE, currentSlotA);
if (EFI_ERROR(status))
return status;
// read flag of slot B
status = mDiskIoProtocol->ReadDisk(
mDiskIoProtocol, mMediaId,
3 * mBlockSize + OP6T_SLOT_B_BOOT_FLAG_LBA3_OFFSET,
OP6T_SLOT_FLAG_SIZE, currentSlotB);
if (EFI_ERROR(status))
return status;
// analyze A/B flags
int flag_offset = 0;
if (currentSlotA[0] == OP6T_SLOT_FLAG_ACTIVE)
return EFI_SUCCESS;
else if (currentSlotA[0] == OP6T_SLOT_FLAG_UNBOOTABLE)
if (currentSlotB[0] == OP6T_SLOT_FLAG_ACTIVE)
return EFI_SUCCESS;
else if (currentSlotB[0] == OP6T_SLOT_FLAG_UNBOOTABLE)
flag_offset = 2 * mBlockSize + OP6T_SLOT_A_BOOT_FLAG_LBA2_OFFSET;
else
SystemTable->ConOut->OutputString(SystemTable->ConOut, L"Succeed to fix CRC32 value.\n");
flag_offset = 3 * mBlockSize + OP6T_SLOT_B_BOOT_FLAG_LBA3_OFFSET;
else
flag_offset = 2 * mBlockSize + OP6T_SLOT_A_BOOT_FLAG_LBA2_OFFSET;
// write flag into disk
unsigned char f[1] = {OP6T_SLOT_FLAG_ACTIVE};
status = mDiskIoProtocol->WriteDisk(
mDiskIoProtocol, mMediaId, flag_offset, OP6T_SLOT_FLAG_SIZE, f);
if (EFI_ERROR(status)) {
SystemTable->ConOut->OutputString(
SystemTable->ConOut, L"Failed to write flag into disk.\n");
continue;
}
else {
SystemTable->ConOut->OutputString(
SystemTable->ConOut, L"Succeed to write flag into disk.\n");
break;
}
}
}
// try to fix gpt crc32
if (mBlockIoProtocol != NULL) {
status = (FixGptCRC32(mBlockIoProtocol, mDiskIoProtocol, SystemTable));
if (EFI_ERROR(status))
SystemTable->ConOut->OutputString(
SystemTable->ConOut, L"Failed to fix CRC32 value.\n");
else
SystemTable->ConOut->OutputString(
SystemTable->ConOut, L"Succeed to fix CRC32 value.\n");
}
// release memory
if (controllerHandles != NULL)
SystemTable->BootServices->FreePool(controllerHandles);
//WaitAnyKey(SystemTable);
return EFI_SUCCESS;
// release memory
if (controllerHandles != NULL)
SystemTable->BootServices->FreePool(controllerHandles);
// WaitAnyKey(SystemTable);
return EFI_SUCCESS;
}
void WaitAnyKey(EFI_SYSTEM_TABLE *mSystemTable) {
UINTN index = 0;
EFI_INPUT_KEY Key;
mSystemTable->BootServices->WaitForEvent(1, &mSystemTable->ConIn->WaitForKey, &index);
mSystemTable->ConIn->ReadKeyStroke(mSystemTable->ConIn, &Key);
void WaitAnyKey(EFI_SYSTEM_TABLE *mSystemTable)
{
UINTN index = 0;
EFI_INPUT_KEY Key;
mSystemTable->BootServices->WaitForEvent(
1, &mSystemTable->ConIn->WaitForKey, &index);
mSystemTable->ConIn->ReadKeyStroke(mSystemTable->ConIn, &Key);
}

View File

@ -16,9 +16,9 @@
* along with this program. If not, see <https://www.gnu.org/licenses/
*/
/*
* Flags of OP6T slots
*/
/*
* Flags of OP6T slots
*/
const unsigned char OP6T_SLOT_FLAG_ACTIVE = 0x6F;
@ -36,38 +36,41 @@ const unsigned char OP6T_SLOT_FLAG_BOOTABLE_6 = 0x2F;
const unsigned OP6T_SLOT_FLAG_BOOTABLE_7 = 0x37;
const unsigned OP6T_SLOT_FLAG_BOOTABLE = 0x37; /* defaultly set bootable the same as bootable_7 */
const unsigned OP6T_SLOT_FLAG_BOOTABLE =
0x37; /* defaultly set bootable the same as bootable_7 */
const unsigned OP6T_SLOT_FLAG_UNBOOTABLE = 0xBA;
// const unsigned OP6T_SLOT_FLAG_SUCCESSFUL = 0xFF; /* OP6T_SLOT_FLAG_SUCCESSFUL maybe uncorrect in this file */
// const unsigned OP6T_SLOT_FLAG_SUCCESSFUL = 0xFF; /* OP6T_SLOT_FLAG_SUCCESSFUL
// maybe uncorrect in this file */
#define OP6T_SLOT_FLAG_SIZE 1
/*
* Flag's offset on disk
* The offset may very from device to device
* Make sure the offset is correct before using it
*/
* Flag's offset on disk
* The offset may very from device to device
* Make sure the offset is correct before using it
*/
#define OP6T_SLOT_A_BOOT_FLAG_LBA2_OFFSET 0x536
#define OP6T_SLOT_B_BOOT_FLAG_LBA3_OFFSET 0x336
/*
* Boot partitions name and their offsets
* Find the right device by comparaing the partition name on the offset
*/
* Boot partitions name and their offsets
* Find the right device by comparaing the partition name on the offset
*/
const unsigned char OP6T_SLOT_A_BOOT_BUFFER[] = {0x62, 0x00, 0x6F, 0x00, 0x6F,
0x00, 0x74, 0x00, 0x5F, 0x00, 0x61}; /* ACSII: b.o.o.t._.a */
const unsigned char OP6T_SLOT_A_BOOT_BUFFER[] = {
0x62, 0x00, 0x6F, 0x00, 0x6F, 0x00,
0x74, 0x00, 0x5F, 0x00, 0x61}; /* ACSII: b.o.o.t._.a */
const unsigned char OP6T_SLOT_B_BOOT_BUFFER[] = {0x62, 0x00, 0x6F, 0x00, 0x6F,
0x00, 0x74, 0x00, 0x5F, 0x00, 0x62}; /* ACSII: b.o.o.t._.b */
const unsigned char OP6T_SLOT_B_BOOT_BUFFER[] = {
0x62, 0x00, 0x6F, 0x00, 0x6F, 0x00,
0x74, 0x00, 0x5F, 0x00, 0x62}; /* ACSII: b.o.o.t._.b */
#define OP6T_SLOT_BOOT_BUFFER_LEN 11
#define OP6T_SLOT_A_BOOT_BUFFER_LBA2_OFFSET 0x538
#define OP6T_SLOT_B_BOOT_BUFFER_LBA3_OFFSET 0x338

File diff suppressed because it is too large Load Diff

View File

@ -1,156 +1,118 @@
/* SimpleFbDxe: Simple FrameBuffer */
#include <PiDxe.h>
#include <Uefi.h>
#include <Library/UefiLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Library/DebugLib.h>
#include <Library/PcdLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/DxeServicesTableLib.h>
#include <Protocol/GraphicsOutput.h>
#include <Library/BaseLib.h>
#include <Library/FrameBufferBltLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/CacheMaintenanceLib.h>
#include <Library/DebugLib.h>
#include <Library/DxeServicesTableLib.h>
#include <Library/FrameBufferBltLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/PcdLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Library/UefiLib.h>
#include <PiDxe.h>
#include <Protocol/GraphicsOutput.h>
#include <Uefi.h>
/// Defines
/*
* Convert enum video_log2_bpp to bytes and bits. Note we omit the outer
* brackets to allow multiplication by fractional pixels.
*/
#define VNBYTES(bpix) (1 << (bpix)) / 8
#define VNBITS(bpix) (1 << (bpix))
#define VNBYTES(bpix) (1 << (bpix)) / 8
#define VNBITS(bpix) (1 << (bpix))
#define FB_BITS_PER_PIXEL (32)
#define FB_BYTES_PER_PIXEL (FB_BITS_PER_PIXEL / 8)
#define FB_BITS_PER_PIXEL (32)
#define FB_BYTES_PER_PIXEL (FB_BITS_PER_PIXEL / 8)
/*
* Bits per pixel selector. Each value n is such that the bits-per-pixel is
* 2 ^ n
*/
enum video_log2_bpp {
VIDEO_BPP1 = 0,
VIDEO_BPP2,
VIDEO_BPP4,
VIDEO_BPP8,
VIDEO_BPP16,
VIDEO_BPP32,
VIDEO_BPP1 = 0,
VIDEO_BPP2,
VIDEO_BPP4,
VIDEO_BPP8,
VIDEO_BPP16,
VIDEO_BPP32,
};
typedef struct {
VENDOR_DEVICE_PATH DisplayDevicePath;
EFI_DEVICE_PATH EndDevicePath;
EFI_DEVICE_PATH EndDevicePath;
} DISPLAY_DEVICE_PATH;
DISPLAY_DEVICE_PATH mDisplayDevicePath =
{
{
DISPLAY_DEVICE_PATH mDisplayDevicePath = {
{{HARDWARE_DEVICE_PATH,
HW_VENDOR_DP,
{
HARDWARE_DEVICE_PATH,
HW_VENDOR_DP,
{
(UINT8)(sizeof(VENDOR_DEVICE_PATH)),
(UINT8)((sizeof(VENDOR_DEVICE_PATH)) >> 8),
}
},
EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID
},
{
END_DEVICE_PATH_TYPE,
END_ENTIRE_DEVICE_PATH_SUBTYPE,
{
sizeof(EFI_DEVICE_PATH_PROTOCOL),
0
}
}
};
}},
EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID},
{END_DEVICE_PATH_TYPE,
END_ENTIRE_DEVICE_PATH_SUBTYPE,
{sizeof(EFI_DEVICE_PATH_PROTOCOL), 0}}};
/// Declares
STATIC FRAME_BUFFER_CONFIGURE *mFrameBufferBltLibConfigure;
STATIC UINTN mFrameBufferBltLibConfigureSize;
STATIC FRAME_BUFFER_CONFIGURE *mFrameBufferBltLibConfigure;
STATIC UINTN mFrameBufferBltLibConfigureSize;
STATIC
EFI_STATUS
EFIAPI
DisplayQueryMode
(
IN EFI_GRAPHICS_OUTPUT_PROTOCOL *This,
IN UINT32 ModeNumber,
OUT UINTN *SizeOfInfo,
OUT EFI_GRAPHICS_OUTPUT_MODE_INFORMATION **Info
);
DisplayQueryMode(
IN EFI_GRAPHICS_OUTPUT_PROTOCOL *This, IN UINT32 ModeNumber,
OUT UINTN *SizeOfInfo, OUT EFI_GRAPHICS_OUTPUT_MODE_INFORMATION **Info);
STATIC
EFI_STATUS
EFIAPI
DisplaySetMode
(
IN EFI_GRAPHICS_OUTPUT_PROTOCOL *This,
IN UINT32 ModeNumber
);
DisplaySetMode(IN EFI_GRAPHICS_OUTPUT_PROTOCOL *This, IN UINT32 ModeNumber);
STATIC
EFI_STATUS
EFIAPI
DisplayBlt
(
IN EFI_GRAPHICS_OUTPUT_PROTOCOL *This,
IN EFI_GRAPHICS_OUTPUT_BLT_PIXEL *BltBuffer, OPTIONAL
IN EFI_GRAPHICS_OUTPUT_BLT_OPERATION BltOperation,
IN UINTN SourceX,
IN UINTN SourceY,
IN UINTN DestinationX,
IN UINTN DestinationY,
IN UINTN Width,
IN UINTN Height,
IN UINTN Delta OPTIONAL
);
DisplayBlt(
IN EFI_GRAPHICS_OUTPUT_PROTOCOL *This,
IN EFI_GRAPHICS_OUTPUT_BLT_PIXEL * BltBuffer,
OPTIONAL IN EFI_GRAPHICS_OUTPUT_BLT_OPERATION BltOperation,
IN UINTN SourceX, IN UINTN SourceY, IN UINTN DestinationX,
IN UINTN DestinationY, IN UINTN Width, IN UINTN Height,
IN UINTN Delta OPTIONAL);
STATIC EFI_GRAPHICS_OUTPUT_PROTOCOL mDisplay = {
DisplayQueryMode,
DisplaySetMode,
DisplayBlt,
NULL
};
DisplayQueryMode, DisplaySetMode, DisplayBlt, NULL};
STATIC
EFI_STATUS
EFIAPI
DisplayQueryMode
(
IN EFI_GRAPHICS_OUTPUT_PROTOCOL *This,
IN UINT32 ModeNumber,
OUT UINTN *SizeOfInfo,
OUT EFI_GRAPHICS_OUTPUT_MODE_INFORMATION **Info
)
DisplayQueryMode(
IN EFI_GRAPHICS_OUTPUT_PROTOCOL *This, IN UINT32 ModeNumber,
OUT UINTN *SizeOfInfo, OUT EFI_GRAPHICS_OUTPUT_MODE_INFORMATION **Info)
{
EFI_STATUS Status;
Status = gBS->AllocatePool(
EfiBootServicesData,
sizeof(EFI_GRAPHICS_OUTPUT_MODE_INFORMATION),
(VOID **) Info);
EFI_STATUS Status;
Status = gBS->AllocatePool(
EfiBootServicesData, sizeof(EFI_GRAPHICS_OUTPUT_MODE_INFORMATION),
(VOID **)Info);
ASSERT_EFI_ERROR(Status);
ASSERT_EFI_ERROR(Status);
*SizeOfInfo = sizeof(EFI_GRAPHICS_OUTPUT_MODE_INFORMATION);
(*Info)->Version = This->Mode->Info->Version;
(*Info)->HorizontalResolution = This->Mode->Info->HorizontalResolution;
(*Info)->VerticalResolution = This->Mode->Info->VerticalResolution;
(*Info)->PixelFormat = This->Mode->Info->PixelFormat;
(*Info)->PixelsPerScanLine = This->Mode->Info->PixelsPerScanLine;
*SizeOfInfo = sizeof(EFI_GRAPHICS_OUTPUT_MODE_INFORMATION);
(*Info)->Version = This->Mode->Info->Version;
(*Info)->HorizontalResolution = This->Mode->Info->HorizontalResolution;
(*Info)->VerticalResolution = This->Mode->Info->VerticalResolution;
(*Info)->PixelFormat = This->Mode->Info->PixelFormat;
(*Info)->PixelsPerScanLine = This->Mode->Info->PixelsPerScanLine;
return EFI_SUCCESS;
return EFI_SUCCESS;
}
STATIC
EFI_STATUS
EFIAPI
DisplaySetMode
(
IN EFI_GRAPHICS_OUTPUT_PROTOCOL *This,
IN UINT32 ModeNumber
)
DisplaySetMode(IN EFI_GRAPHICS_OUTPUT_PROTOCOL *This, IN UINT32 ModeNumber)
{
return EFI_SUCCESS;
}
@ -158,160 +120,136 @@ DisplaySetMode
STATIC
EFI_STATUS
EFIAPI
DisplayBlt
(
IN EFI_GRAPHICS_OUTPUT_PROTOCOL *This,
IN EFI_GRAPHICS_OUTPUT_BLT_PIXEL *BltBuffer, OPTIONAL
IN EFI_GRAPHICS_OUTPUT_BLT_OPERATION BltOperation,
IN UINTN SourceX,
IN UINTN SourceY,
IN UINTN DestinationX,
IN UINTN DestinationY,
IN UINTN Width,
IN UINTN Height,
IN UINTN Delta OPTIONAL
)
DisplayBlt(
IN EFI_GRAPHICS_OUTPUT_PROTOCOL *This,
IN EFI_GRAPHICS_OUTPUT_BLT_PIXEL * BltBuffer,
OPTIONAL IN EFI_GRAPHICS_OUTPUT_BLT_OPERATION BltOperation,
IN UINTN SourceX, IN UINTN SourceY, IN UINTN DestinationX,
IN UINTN DestinationY, IN UINTN Width, IN UINTN Height,
IN UINTN Delta OPTIONAL)
{
RETURN_STATUS Status;
EFI_TPL Tpl;
RETURN_STATUS Status;
EFI_TPL Tpl;
//
// We have to raise to TPL_NOTIFY, so we make an atomic write to the frame buffer.
// We would not want a timer based event (Cursor, ...) to come in while we are
// doing this operation.
// We have to raise to TPL_NOTIFY, so we make an atomic write to the frame
// buffer. We would not want a timer based event (Cursor, ...) to come in
// while we are doing this operation.
//
Tpl = gBS->RaiseTPL (TPL_NOTIFY);
Status = FrameBufferBlt (
mFrameBufferBltLibConfigure,
BltBuffer,
BltOperation,
SourceX, SourceY,
DestinationX, DestinationY, Width, Height,
Delta
);
gBS->RestoreTPL (Tpl);
Tpl = gBS->RaiseTPL(TPL_NOTIFY);
Status = FrameBufferBlt(
mFrameBufferBltLibConfigure, BltBuffer, BltOperation, SourceX, SourceY,
DestinationX, DestinationY, Width, Height, Delta);
gBS->RestoreTPL(Tpl);
// zhuowei: hack: flush the cache manually since my memory maps are still broken
WriteBackInvalidateDataCacheRange((void*)mDisplay.Mode->FrameBufferBase,
mDisplay.Mode->FrameBufferSize);
// zhuowei: hack: flush the cache manually since my memory maps are still
// broken
WriteBackInvalidateDataCacheRange(
(void *)mDisplay.Mode->FrameBufferBase, mDisplay.Mode->FrameBufferSize);
// zhuowei: end hack
return RETURN_ERROR (Status) ? EFI_INVALID_PARAMETER : EFI_SUCCESS;
return RETURN_ERROR(Status) ? EFI_INVALID_PARAMETER : EFI_SUCCESS;
}
EFI_STATUS
EFIAPI
SimpleFbDxeInitialize
(
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
SimpleFbDxeInitialize(
IN EFI_HANDLE ImageHandle, IN EFI_SYSTEM_TABLE *SystemTable)
{
EFI_STATUS Status = EFI_SUCCESS;
EFI_HANDLE hUEFIDisplayHandle = NULL;
EFI_STATUS Status = EFI_SUCCESS;
EFI_HANDLE hUEFIDisplayHandle = NULL;
/* Retrieve simple frame buffer from pre-SEC bootloader */
DEBUG((EFI_D_ERROR, "SimpleFbDxe: Retrieve MIPI FrameBuffer parameters from PCD\n"));
UINT32 MipiFrameBufferAddr = FixedPcdGet32(PcdMipiFrameBufferAddress);
UINT32 MipiFrameBufferWidth = FixedPcdGet32(PcdMipiFrameBufferWidth);
UINT32 MipiFrameBufferHeight = FixedPcdGet32(PcdMipiFrameBufferHeight);
/* Retrieve simple frame buffer from pre-SEC bootloader */
DEBUG(
(EFI_D_ERROR,
"SimpleFbDxe: Retrieve MIPI FrameBuffer parameters from PCD\n"));
UINT32 MipiFrameBufferAddr = FixedPcdGet32(PcdMipiFrameBufferAddress);
UINT32 MipiFrameBufferWidth = FixedPcdGet32(PcdMipiFrameBufferWidth);
UINT32 MipiFrameBufferHeight = FixedPcdGet32(PcdMipiFrameBufferHeight);
/* Sanity check */
if (MipiFrameBufferAddr == 0 || MipiFrameBufferWidth == 0 || MipiFrameBufferHeight == 0)
{
DEBUG((EFI_D_ERROR, "SimpleFbDxe: Invalid FrameBuffer parameters\n"));
return EFI_DEVICE_ERROR;
/* Sanity check */
if (MipiFrameBufferAddr == 0 || MipiFrameBufferWidth == 0 ||
MipiFrameBufferHeight == 0) {
DEBUG((EFI_D_ERROR, "SimpleFbDxe: Invalid FrameBuffer parameters\n"));
return EFI_DEVICE_ERROR;
}
/* Prepare struct */
if (mDisplay.Mode == NULL) {
Status = gBS->AllocatePool(
EfiBootServicesData, sizeof(EFI_GRAPHICS_OUTPUT_PROTOCOL_MODE),
(VOID **)&mDisplay.Mode);
ASSERT_EFI_ERROR(Status);
if (EFI_ERROR(Status))
return Status;
ZeroMem(mDisplay.Mode, sizeof(EFI_GRAPHICS_OUTPUT_PROTOCOL_MODE));
}
if (mDisplay.Mode->Info == NULL) {
Status = gBS->AllocatePool(
EfiBootServicesData, sizeof(EFI_GRAPHICS_OUTPUT_MODE_INFORMATION),
(VOID **)&mDisplay.Mode->Info);
ASSERT_EFI_ERROR(Status);
if (EFI_ERROR(Status))
return Status;
ZeroMem(mDisplay.Mode->Info, sizeof(EFI_GRAPHICS_OUTPUT_MODE_INFORMATION));
}
/* Set information */
mDisplay.Mode->MaxMode = 1;
mDisplay.Mode->Mode = 0;
mDisplay.Mode->Info->Version = 0;
mDisplay.Mode->Info->HorizontalResolution = MipiFrameBufferWidth;
mDisplay.Mode->Info->VerticalResolution = MipiFrameBufferHeight;
/* SimpleFB runs on a8r8g8b8 (VIDEO_BPP32) for DB410c */
UINT32 LineLength = MipiFrameBufferWidth * VNBYTES(VIDEO_BPP32);
UINT32 FrameBufferSize = LineLength * MipiFrameBufferHeight;
EFI_PHYSICAL_ADDRESS FrameBufferAddress = MipiFrameBufferAddr;
mDisplay.Mode->Info->PixelsPerScanLine = MipiFrameBufferWidth;
mDisplay.Mode->Info->PixelFormat = PixelBlueGreenRedReserved8BitPerColor;
mDisplay.Mode->SizeOfInfo = sizeof(EFI_GRAPHICS_OUTPUT_MODE_INFORMATION);
mDisplay.Mode->FrameBufferBase = FrameBufferAddress;
mDisplay.Mode->FrameBufferSize = FrameBufferSize;
//
// Create the FrameBufferBltLib configuration.
//
Status = FrameBufferBltConfigure(
(VOID *)(UINTN)mDisplay.Mode->FrameBufferBase, mDisplay.Mode->Info,
mFrameBufferBltLibConfigure, &mFrameBufferBltLibConfigureSize);
if (Status == RETURN_BUFFER_TOO_SMALL) {
mFrameBufferBltLibConfigure = AllocatePool(mFrameBufferBltLibConfigureSize);
if (mFrameBufferBltLibConfigure != NULL) {
Status = FrameBufferBltConfigure(
(VOID *)(UINTN)mDisplay.Mode->FrameBufferBase, mDisplay.Mode->Info,
mFrameBufferBltLibConfigure, &mFrameBufferBltLibConfigureSize);
}
}
ASSERT_EFI_ERROR(Status);
/* Prepare struct */
if (mDisplay.Mode == NULL)
{
Status = gBS->AllocatePool(
EfiBootServicesData,
sizeof(EFI_GRAPHICS_OUTPUT_PROTOCOL_MODE),
(VOID **) &mDisplay.Mode
);
// zhuowei: clear the screen to black
// UEFI standard requires this, since text is white - see
// OvmfPkg/QemuVideoDxe/Gop.c
ZeroMem((void *)FrameBufferAddress, FrameBufferSize);
// hack: clear cache
WriteBackInvalidateDataCacheRange(
(void *)FrameBufferAddress, FrameBufferSize);
// zhuowei: end
ASSERT_EFI_ERROR(Status);
if (EFI_ERROR(Status)) return Status;
/* Register handle */
Status = gBS->InstallMultipleProtocolInterfaces(
&hUEFIDisplayHandle, &gEfiDevicePathProtocolGuid, &mDisplayDevicePath,
&gEfiGraphicsOutputProtocolGuid, &mDisplay, NULL);
ZeroMem(mDisplay.Mode, sizeof(EFI_GRAPHICS_OUTPUT_PROTOCOL_MODE));
}
if (mDisplay.Mode->Info == NULL)
{
Status = gBS->AllocatePool(
EfiBootServicesData,
sizeof(EFI_GRAPHICS_OUTPUT_MODE_INFORMATION),
(VOID **) &mDisplay.Mode->Info
);
ASSERT_EFI_ERROR(Status);
if (EFI_ERROR(Status)) return Status;
ZeroMem(mDisplay.Mode->Info, sizeof(EFI_GRAPHICS_OUTPUT_MODE_INFORMATION));
}
/* Set information */
mDisplay.Mode->MaxMode = 1;
mDisplay.Mode->Mode = 0;
mDisplay.Mode->Info->Version = 0;
mDisplay.Mode->Info->HorizontalResolution = MipiFrameBufferWidth;
mDisplay.Mode->Info->VerticalResolution = MipiFrameBufferHeight;
/* SimpleFB runs on a8r8g8b8 (VIDEO_BPP32) for DB410c */
UINT32 LineLength = MipiFrameBufferWidth * VNBYTES(VIDEO_BPP32);
UINT32 FrameBufferSize = LineLength * MipiFrameBufferHeight;
EFI_PHYSICAL_ADDRESS FrameBufferAddress = MipiFrameBufferAddr;
mDisplay.Mode->Info->PixelsPerScanLine = MipiFrameBufferWidth;
mDisplay.Mode->Info->PixelFormat = PixelBlueGreenRedReserved8BitPerColor;
mDisplay.Mode->SizeOfInfo = sizeof(EFI_GRAPHICS_OUTPUT_MODE_INFORMATION);
mDisplay.Mode->FrameBufferBase = FrameBufferAddress;
mDisplay.Mode->FrameBufferSize = FrameBufferSize;
//
// Create the FrameBufferBltLib configuration.
//
Status = FrameBufferBltConfigure (
(VOID *) (UINTN) mDisplay.Mode->FrameBufferBase,
mDisplay.Mode->Info,
mFrameBufferBltLibConfigure,
&mFrameBufferBltLibConfigureSize
);
if (Status == RETURN_BUFFER_TOO_SMALL) {
mFrameBufferBltLibConfigure = AllocatePool (mFrameBufferBltLibConfigureSize);
if (mFrameBufferBltLibConfigure != NULL) {
Status = FrameBufferBltConfigure (
(VOID *) (UINTN) mDisplay.Mode->FrameBufferBase,
mDisplay.Mode->Info,
mFrameBufferBltLibConfigure,
&mFrameBufferBltLibConfigureSize
);
}
}
ASSERT_EFI_ERROR (Status);
// zhuowei: clear the screen to black
// UEFI standard requires this, since text is white - see OvmfPkg/QemuVideoDxe/Gop.c
ZeroMem((void*)FrameBufferAddress, FrameBufferSize);
// hack: clear cache
WriteBackInvalidateDataCacheRange((void*)FrameBufferAddress, FrameBufferSize);
// zhuowei: end
/* Register handle */
Status = gBS->InstallMultipleProtocolInterfaces(
&hUEFIDisplayHandle,
&gEfiDevicePathProtocolGuid,
&mDisplayDevicePath,
&gEfiGraphicsOutputProtocolGuid,
&mDisplay,
NULL);
ASSERT_EFI_ERROR (Status);
return Status;
ASSERT_EFI_ERROR(Status);
return Status;
}

File diff suppressed because it is too large Load Diff

View File

@ -1,16 +1,17 @@
/** @file
*
* Copyright (c) 2018, Linaro Ltd. All rights reserved.
*
* This program and the accompanying materials
* are licensed and made available under the terms and conditions of the BSD License
* which accompanies this distribution. The full text of the license may be found at
* http://opensource.org/licenses/bsd-license.php
*
* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
*
**/
*
* Copyright (c) 2018, Linaro Ltd. All rights reserved.
*
* This program and the accompanying materials
* are licensed and made available under the terms and conditions of the BSD
*License which accompanies this distribution. The full text of the license may
*be found at http://opensource.org/licenses/bsd-license.php
*
* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR
*IMPLIED.
*
**/
#include <Guid/EventGroup.h>
@ -36,17 +37,13 @@
#include "sdm845Dxe.h"
EFI_CPU_ARCH_PROTOCOL *gCpu;
EFI_CPU_ARCH_PROTOCOL *gCpu;
VOID
InitPeripherals (
IN VOID
)
VOID InitPeripherals(IN VOID)
{
//Lock the QcomWdogTimer in a cage on certain devices
MmioWrite32(0x17980008,0x000000);
DEBUG ((EFI_D_WARN, "\n \v The Dog has been locked in a cage :)\v"));
// Lock the QcomWdogTimer in a cage on certain devices
MmioWrite32(0x17980008, 0x000000);
DEBUG((EFI_D_WARN, "\n \v The Dog has been locked in a cage :)\v"));
}
/**
@ -64,28 +61,19 @@ InitPeripherals (
@param[in] Context NULL
**/
STATIC
VOID
OnEndOfDxe (
IN EFI_EVENT Event,
IN VOID *Context
)
{
}
VOID OnEndOfDxe(IN EFI_EVENT Event, IN VOID *Context) {}
EFI_STATUS
EFIAPI
sdm845EntryPoint (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
sdm845EntryPoint(IN EFI_HANDLE ImageHandle, IN EFI_SYSTEM_TABLE *SystemTable)
{
EFI_STATUS Status;
EFI_EVENT EndOfDxeEvent;
EFI_STATUS Status;
EFI_EVENT EndOfDxeEvent;
Status = gBS->LocateProtocol (&gEfiCpuArchProtocolGuid, NULL, (VOID **)&gCpu);
Status = gBS->LocateProtocol(&gEfiCpuArchProtocolGuid, NULL, (VOID **)&gCpu);
ASSERT_EFI_ERROR(Status);
InitPeripherals ();
InitPeripherals();
//
// Create an event belonging to the "gEfiEndOfDxeEventGroupGuid" group.
@ -94,13 +82,8 @@ sdm845EntryPoint (
// same group is signalled to inform about the end of the DXE phase.
// Install the INSTALL_FDT_PROTOCOL protocol.
//
Status = gBS->CreateEventEx (
EVT_NOTIFY_SIGNAL,
TPL_CALLBACK,
OnEndOfDxe,
NULL,
&gEfiEndOfDxeEventGroupGuid,
&EndOfDxeEvent
);
Status = gBS->CreateEventEx(
EVT_NOTIFY_SIGNAL, TPL_CALLBACK, OnEndOfDxe, NULL,
&gEfiEndOfDxeEventGroupGuid, &EndOfDxeEvent);
return Status;
}

View File

@ -1,16 +1,17 @@
/** @file
*
* Copyright (c) 2013-2017, ARM Limited. All rights reserved.
*
* This program and the accompanying materials
* are licensed and made available under the terms and conditions of the BSD License
* which accompanies this distribution. The full text of the license may be found at
* http://opensource.org/licenses/bsd-license.php
*
* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
*
**/
*
* Copyright (c) 2013-2017, ARM Limited. All rights reserved.
*
* This program and the accompanying materials
* are licensed and made available under the terms and conditions of the BSD
*License which accompanies this distribution. The full text of the license may
*be found at http://opensource.org/licenses/bsd-license.php
*
* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR
*IMPLIED.
*
**/
#ifndef __ARM_JUNO_H__
#define __ARM_JUNO_H__
@ -26,34 +27,37 @@
//
// ACPI table information used to initialize tables.
//
#define EFI_ACPI_ARM_OEM_ID 'A','R','M','L','T','D' // OEMID 6 bytes long
#define EFI_ACPI_ARM_OEM_TABLE_ID SIGNATURE_64('A','R','M','-','J','U','N','O') // OEM table id 8 bytes long
#define EFI_ACPI_ARM_OEM_REVISION 0x20140727
#define EFI_ACPI_ARM_CREATOR_ID SIGNATURE_32('A','R','M',' ')
#define EFI_ACPI_ARM_OEM_ID 'A', 'R', 'M', 'L', 'T', 'D' // OEMID 6 bytes long
#define EFI_ACPI_ARM_OEM_TABLE_ID \
SIGNATURE_64( \
'A', 'R', 'M', '-', 'J', 'U', 'N', 'O') // OEM table id 8 bytes long
#define EFI_ACPI_ARM_OEM_REVISION 0x20140727
#define EFI_ACPI_ARM_CREATOR_ID SIGNATURE_32('A', 'R', 'M', ' ')
#define EFI_ACPI_ARM_CREATOR_REVISION 0x00000099
// A macro to initialise the common header part of EFI ACPI tables as defined by
// EFI_ACPI_DESCRIPTION_HEADER structure.
#define ARM_ACPI_HEADER(Signature, Type, Revision) { \
Signature, /* UINT32 Signature */ \
sizeof (Type), /* UINT32 Length */ \
Revision, /* UINT8 Revision */ \
0, /* UINT8 Checksum */ \
{ EFI_ACPI_ARM_OEM_ID }, /* UINT8 OemId[6] */ \
EFI_ACPI_ARM_OEM_TABLE_ID, /* UINT64 OemTableId */ \
EFI_ACPI_ARM_OEM_REVISION, /* UINT32 OemRevision */ \
EFI_ACPI_ARM_CREATOR_ID, /* UINT32 CreatorId */ \
EFI_ACPI_ARM_CREATOR_REVISION /* UINT32 CreatorRevision */ \
#define ARM_ACPI_HEADER(Signature, Type, Revision) \
{ \
Signature, /* UINT32 Signature */ \
sizeof(Type), /* UINT32 Length */ \
Revision, /* UINT8 Revision */ \
0, /* UINT8 Checksum */ \
{EFI_ACPI_ARM_OEM_ID}, /* UINT8 OemId[6] */ \
EFI_ACPI_ARM_OEM_TABLE_ID, /* UINT64 OemTableId */ \
EFI_ACPI_ARM_OEM_REVISION, /* UINT32 OemRevision */ \
EFI_ACPI_ARM_CREATOR_ID, /* UINT32 CreatorId */ \
EFI_ACPI_ARM_CREATOR_REVISION /* UINT32 CreatorRevision */ \
}
//
// Hardware platform identifiers
//
#define JUNO_REVISION_PROTOTYPE 0
#define JUNO_REVISION_R0 1
#define JUNO_REVISION_R1 2
#define JUNO_REVISION_R2 3
#define JUNO_REVISION_UKNOWN 0xFF
#define JUNO_REVISION_R0 1
#define JUNO_REVISION_R1 2
#define JUNO_REVISION_R2 3
#define JUNO_REVISION_UKNOWN 0xFF
// Define if the exported ACPI Tables are based on ACPI 5.0 spec or latest
//#define ARM_JUNO_ACPI_5_0

View File

@ -37,20 +37,19 @@ static ARM_MEMORY_REGION_DESCRIPTOR_EX gDeviceMemoryDescriptorEx[] = {
SYSTEM_MEMORY_RESOURCE_ATTR_CAPABILITIES,
ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK, AddMem, EfiBootServicesCode},
/* HLOS1 */
{0x81AC0000, 0x03C40000, EFI_RESOURCE_SYSTEM_MEMORY,
{0x81AC0000, 0x03C40000, EFI_RESOURCE_SYSTEM_MEMORY,
SYSTEM_MEMORY_RESOURCE_ATTR_CAPABILITIES,
ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK, AddMem,
EfiBootServicesData},
/* MPSS_EFS */
{0x85D00000, 0x00200000, EFI_RESOURCE_SYSTEM_MEMORY,
ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK, AddMem, EfiBootServicesData},
/* MPSS_EFS */
{0x85D00000, 0x00200000, EFI_RESOURCE_SYSTEM_MEMORY,
SYSTEM_MEMORY_RESOURCE_ATTR_CAPABILITIES,
ARM_MEMORY_REGION_ATTRIBUTE_DEVICE, AddMem, EfiReservedMemoryType},
/* GPU PRR */
{0x85F00000, 0x00010000, EFI_RESOURCE_SYSTEM_MEMORY,
/* GPU PRR */
{0x85F00000, 0x00010000, EFI_RESOURCE_SYSTEM_MEMORY,
SYSTEM_MEMORY_RESOURCE_ATTR_CAPABILITIES,
ARM_MEMORY_REGION_ATTRIBUTE_DEVICE, AddMem, EfiReservedMemoryType},
/* HLOS2 */
{0x85F10000, 0x000B0000, EFI_RESOURCE_SYSTEM_MEMORY,
/* HLOS2 */
{0x85F10000, 0x000B0000, EFI_RESOURCE_SYSTEM_MEMORY,
SYSTEM_MEMORY_RESOURCE_ATTR_CAPABILITIES,
ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK, AddMem, EfiBootServicesData},
/* AOP CMD DB */
@ -62,17 +61,17 @@ static ARM_MEMORY_REGION_DESCRIPTOR_EX gDeviceMemoryDescriptorEx[] = {
EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE,
ARM_MEMORY_REGION_ATTRIBUTE_UNCACHED_UNBUFFERED, AddMem,
EfiReservedMemoryType},
/* TZApps */
{0x86D00000, 0x00E00000, EFI_RESOURCE_SYSTEM_MEMORY,
/* TZApps */
{0x86D00000, 0x00E00000, EFI_RESOURCE_SYSTEM_MEMORY,
SYSTEM_MEMORY_RESOURCE_ATTR_CAPABILITIES,
ARM_MEMORY_REGION_ATTRIBUTE_DEVICE, NoHob, EfiReservedMemoryType},
/* TGCM */
{0x8B500000, 0x00A00000, EFI_RESOURCE_SYSTEM_MEMORY,
/* TGCM */
{0x8B500000, 0x00A00000, EFI_RESOURCE_SYSTEM_MEMORY,
SYSTEM_MEMORY_RESOURCE_ATTR_CAPABILITIES,
ARM_MEMORY_REGION_ATTRIBUTE_DEVICE, AddMem, EfiReservedMemoryType},
#ifdef XIAOMI_PIL_FIXED
/* PIL_REGION */
{0x8BF00000, 0x0C100000, EFI_RESOURCE_SYSTEM_MEMORY,
/* PIL_REGION */
{0x8BF00000, 0x0C100000, EFI_RESOURCE_SYSTEM_MEMORY,
SYSTEM_MEMORY_RESOURCE_ATTR_CAPABILITIES,
ARM_MEMORY_REGION_ATTRIBUTE_DEVICE, AddMem, EfiReservedMemoryType},
/* DXE Heap */
@ -80,8 +79,8 @@ static ARM_MEMORY_REGION_DESCRIPTOR_EX gDeviceMemoryDescriptorEx[] = {
SYSTEM_MEMORY_RESOURCE_ATTR_CAPABILITIES,
ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK, AddMem, EfiConventionalMemory},
#else
/* PIL_REGION */
{0x8BF00000, 0x0BD00000, EFI_RESOURCE_SYSTEM_MEMORY,
/* PIL_REGION */
{0x8BF00000, 0x0BD00000, EFI_RESOURCE_SYSTEM_MEMORY,
SYSTEM_MEMORY_RESOURCE_ATTR_CAPABILITIES,
ARM_MEMORY_REGION_ATTRIBUTE_DEVICE, AddMem, EfiReservedMemoryType},
/* DXE Heap */
@ -125,54 +124,54 @@ static ARM_MEMORY_REGION_DESCRIPTOR_EX gDeviceMemoryDescriptorEx[] = {
{0x9FF90000, 0x00040000, EFI_RESOURCE_SYSTEM_MEMORY,
SYSTEM_MEMORY_RESOURCE_ATTR_CAPABILITIES,
ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK, AddMem, EfiBootServicesData},
{0x9FFD0000, 0x0000A000, EFI_RESOURCE_SYSTEM_MEMORY,
{0x9FFD0000, 0x0000A000, EFI_RESOURCE_SYSTEM_MEMORY,
SYSTEM_MEMORY_RESOURCE_ATTR_CAPABILITIES,
ARM_MEMORY_REGION_ATTRIBUTE_UNCACHED_UNBUFFERED, AddMem,
EfiRuntimeServicesData},
{0x9FFDA000, 0x00003000, EFI_RESOURCE_SYSTEM_MEMORY,
{0x9FFDA000, 0x00003000, EFI_RESOURCE_SYSTEM_MEMORY,
SYSTEM_MEMORY_RESOURCE_ATTR_CAPABILITIES,
ARM_MEMORY_REGION_ATTRIBUTE_UNCACHED_UNBUFFERED, AddMem,
EfiRuntimeServicesData},
{0x9FFDD000, 0x00004000, EFI_RESOURCE_SYSTEM_MEMORY,
{0x9FFDD000, 0x00004000, EFI_RESOURCE_SYSTEM_MEMORY,
SYSTEM_MEMORY_RESOURCE_ATTR_CAPABILITIES,
ARM_MEMORY_REGION_ATTRIBUTE_UNCACHED_UNBUFFERED, AddMem,
EfiRuntimeServicesData},
{0x9FFE1000, 0x00001000, EFI_RESOURCE_SYSTEM_MEMORY,
{0x9FFE1000, 0x00001000, EFI_RESOURCE_SYSTEM_MEMORY,
SYSTEM_MEMORY_RESOURCE_ATTR_CAPABILITIES,
ARM_MEMORY_REGION_ATTRIBUTE_UNCACHED_UNBUFFERED, AddMem,
EfiRuntimeServicesData},
{0x9FFE2000, 0x00001000, EFI_RESOURCE_SYSTEM_MEMORY,
{0x9FFE2000, 0x00001000, EFI_RESOURCE_SYSTEM_MEMORY,
SYSTEM_MEMORY_RESOURCE_ATTR_CAPABILITIES,
ARM_MEMORY_REGION_ATTRIBUTE_UNCACHED_UNBUFFERED, AddMem,
EfiRuntimeServicesData},
{0x9FFE3000, 0x00014000, EFI_RESOURCE_SYSTEM_MEMORY,
{0x9FFE3000, 0x00014000, EFI_RESOURCE_SYSTEM_MEMORY,
SYSTEM_MEMORY_RESOURCE_ATTR_CAPABILITIES,
ARM_MEMORY_REGION_ATTRIBUTE_UNCACHED_UNBUFFERED, AddMem,
EfiRuntimeServicesData},
{0x9FFF7000, 0x00008000, EFI_RESOURCE_SYSTEM_MEMORY,
{0x9FFF7000, 0x00008000, EFI_RESOURCE_SYSTEM_MEMORY,
SYSTEM_MEMORY_RESOURCE_ATTR_CAPABILITIES,
ARM_MEMORY_REGION_ATTRIBUTE_UNCACHED_UNBUFFERED, AddMem,
EfiRuntimeServicesData},
{0x9FFFF000, 0x00001000, EFI_RESOURCE_SYSTEM_MEMORY,
{0x9FFFF000, 0x00001000, EFI_RESOURCE_SYSTEM_MEMORY,
SYSTEM_MEMORY_RESOURCE_ATTR_CAPABILITIES,
ARM_MEMORY_REGION_ATTRIBUTE_UNCACHED_UNBUFFERED, AddMem,
EfiRuntimeServicesData},
#ifdef MEMORY_4G
{0xA0000000, 0xDDFA0000, EFI_RESOURCE_SYSTEM_MEMORY,
{0xA0000000, 0xDDFA0000, EFI_RESOURCE_SYSTEM_MEMORY,
SYSTEM_MEMORY_RESOURCE_ATTR_CAPABILITIES,
ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK, AddMem, EfiConventionalMemory},
#else
#ifdef MEMORY_8G
{0xA0000000, 0xE0000000, EFI_RESOURCE_SYSTEM_MEMORY,
{0xA0000000, 0xE0000000, EFI_RESOURCE_SYSTEM_MEMORY,
SYSTEM_MEMORY_RESOURCE_ATTR_CAPABILITIES,
ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK, AddMem, EfiConventionalMemory},
{0x180000000,0xFC8A0000, EFI_RESOURCE_SYSTEM_MEMORY,
{0x180000000, 0xFC8A0000, EFI_RESOURCE_SYSTEM_MEMORY,
SYSTEM_MEMORY_RESOURCE_ATTR_CAPABILITIES,
ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK, AddMem, EfiConventionalMemory},
#else
{0xA0000000, 0x15AE00000, EFI_RESOURCE_SYSTEM_MEMORY,
{0xA0000000, 0x15AE00000, EFI_RESOURCE_SYSTEM_MEMORY,
SYSTEM_MEMORY_RESOURCE_ATTR_CAPABILITIES,
ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK, AddMem, EfiConventionalMemory},
@ -216,12 +215,12 @@ static ARM_MEMORY_REGION_DESCRIPTOR_EX gDeviceMemoryDescriptorEx[] = {
{0x00A00000, 0x000D0000, EFI_RESOURCE_MEMORY_MAPPED_IO,
EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE, ARM_MEMORY_REGION_ATTRIBUTE_DEVICE,
AddDev, EfiMemoryMappedIO},
/* PCIE_0_WRAPPER_AHB */
{0x01C00000, 0x00008000, EFI_RESOURCE_MEMORY_MAPPED_IO,
/* PCIE_0_WRAPPER_AHB */
{0x01C00000, 0x00008000, EFI_RESOURCE_MEMORY_MAPPED_IO,
EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE, ARM_MEMORY_REGION_ATTRIBUTE_DEVICE,
AddDev, EfiMemoryMappedIO},
/* PCIE_1_WRAPPER_AHB */
{0x01C08000, 0x00008000, EFI_RESOURCE_MEMORY_MAPPED_IO,
/* PCIE_1_WRAPPER_AHB */
{0x01C08000, 0x00008000, EFI_RESOURCE_MEMORY_MAPPED_IO,
EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE, ARM_MEMORY_REGION_ATTRIBUTE_DEVICE,
AddDev, EfiMemoryMappedIO},
/* UFS UFS REGS */
@ -291,10 +290,10 @@ static ARM_MEMORY_REGION_DESCRIPTOR_EX gDeviceMemoryDescriptorEx[] = {
{0x0AB00000, 0x00010000, EFI_RESOURCE_MEMORY_MAPPED_IO,
EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE, ARM_MEMORY_REGION_ATTRIBUTE_DEVICE,
AddDev, EfiMemoryMappedIO},
/* TITAN_A_CCI */
{0x0AC4A000, 0x00004000, EFI_RESOURCE_MEMORY_MAPPED_IO,
/* TITAN_A_CCI */
{0x0AC4A000, 0x00004000, EFI_RESOURCE_MEMORY_MAPPED_IO,
EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE, ARM_MEMORY_REGION_ATTRIBUTE_DEVICE,
AddDev, EfiMemoryMappedIO},
AddDev, EfiMemoryMappedIO},
/* TITAN_CAM_CC */
{0x0AD00000, 0x00010000, EFI_RESOURCE_MEMORY_MAPPED_IO,
EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE, ARM_MEMORY_REGION_ATTRIBUTE_DEVICE,
@ -399,12 +398,12 @@ static ARM_MEMORY_REGION_DESCRIPTOR_EX gDeviceMemoryDescriptorEx[] = {
{0x17D20000, 0x000B0000, EFI_RESOURCE_MEMORY_MAPPED_IO,
EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE, ARM_MEMORY_REGION_ATTRIBUTE_DEVICE,
AddDev, EfiMemoryMappedIO},
/* PCIE_1_WRAPPER_AXI */
{0x40000000, 0x02000000, EFI_RESOURCE_MEMORY_MAPPED_IO,
/* PCIE_1_WRAPPER_AXI */
{0x40000000, 0x02000000, EFI_RESOURCE_MEMORY_MAPPED_IO,
EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE, ARM_MEMORY_REGION_ATTRIBUTE_DEVICE,
AddDev, EfiMemoryMappedIO},
/* PCIE_0_WRAPPER_AXI */
{0x60000000, 0x01000000, EFI_RESOURCE_MEMORY_MAPPED_IO,
/* PCIE_0_WRAPPER_AXI */
{0x60000000, 0x01000000, EFI_RESOURCE_MEMORY_MAPPED_IO,
EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE, ARM_MEMORY_REGION_ATTRIBUTE_DEVICE,
AddDev, EfiMemoryMappedIO},
/* Terminator */

View File

@ -24,7 +24,7 @@
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
*/
#ifndef __BSL_BLOCK_UTILS_H__
#define __BSL_BLOCK_UTILS_H__
@ -97,14 +97,13 @@ typedef struct {
typedef struct {
EFI_GUID *RootDeviceType; /* GUID Selecting the root device type */
EFI_GUID *PartitionType; /* Partition Type to match */
CHAR8 *VolumeName; /* Mounted filesystem volume name to match */
CHAR16 *PartitionLabel; /* Partition label to match */
CHAR8 * VolumeName; /* Mounted filesystem volume name to match */
CHAR16 * PartitionLabel; /* Partition label to match */
} PartiSelectFilter;
EFI_STATUS
EFIAPI
GetPartitionEntry (IN EFI_HANDLE Handle,
OUT EFI_PARTITION_ENTRY **PartEntry);
GetPartitionEntry(IN EFI_HANDLE Handle, OUT EFI_PARTITION_ENTRY **PartEntry);
/**
Returns a list of BlkIo handles based on required criteria
@ -122,9 +121,8 @@ GetPartitionEntry (IN EFI_HANDLE Handle,
*/
EFI_STATUS
EFIAPI
GetBlkIOHandles (IN UINT32 SelectionAttrib,
IN PartiSelectFilter *FilterData,
OUT HandleInfo *HandleInfoPtr,
IN OUT UINT32 *MaxBlkIopCnt);
GetBlkIOHandles(
IN UINT32 SelectionAttrib, IN PartiSelectFilter *FilterData,
OUT HandleInfo *HandleInfoPtr, IN OUT UINT32 *MaxBlkIopCnt);
#endif

View File

@ -144,7 +144,7 @@ table in the respective position mentioned below.
((UINT32) * (x + 3) << 24))
#define PUT_LONG(x, y) \
*(x) = y & 0xff; \
*(x) = y & 0xff; \
*(x + 1) = (y >> 8) & 0xff; \
*(x + 2) = (y >> 16) & 0xff; \
*(x + 3) = (y >> 24) & 0xff;
@ -163,15 +163,16 @@ table in the respective position mentioned below.
do { \
Status = (code); \
if (Status != EFI_SUCCESS) { \
DEBUG ((EFI_D_ERROR, "Err: line:%d %a() status: %r\n", __LINE__, \
__FUNCTION__, Status)); \
DEBUG( \
(EFI_D_ERROR, "Err: line:%d %a() status: %r\n", __LINE__, \
__FUNCTION__, Status)); \
return Status; \
} \
} while (0)
struct StoragePartInfo {
HandleInfo HandleInfoList[MAX_NUM_PARTITIONS];
UINT32 MaxHandles;
UINT32 MaxHandles;
};
extern struct StoragePartInfo Ptable[MAX_LUNS];
@ -179,31 +180,32 @@ typedef struct {
CHAR16 Suffix[MAX_SLOT_SUFFIX_SZ];
} Slot;
Slot GetCurrentSlotSuffix ();
UINT32 GetMaxLuns ();
VOID GetPartitionCount (UINT32 *Val);
VOID SetMultiSlotBootVal (BOOLEAN Val);
Slot GetCurrentSlotSuffix();
UINT32 GetMaxLuns();
VOID GetPartitionCount(UINT32 *Val);
VOID SetMultiSlotBootVal(BOOLEAN Val);
struct PartitionEntry {
EFI_PARTITION_ENTRY PartEntry;
UINT32 lun;
UINT32 lun;
};
extern struct PartitionEntry PtnEntries[MAX_NUM_PARTITIONS];
struct BootPartsLinkedList {
CHAR16 PartName[BOOT_PART_SIZE];
CHAR16 PartName[BOOT_PART_SIZE];
struct BootPartsLinkedList *Next;
};
INT32 GetPartitionIndex (CHAR16 *PartitionName);
BOOLEAN PartitionHasMultiSlot (CONST CHAR16 *Pname);
EFI_STATUS EnumeratePartitions (VOID);
VOID UpdatePartitionEntries (VOID);
VOID UpdatePartitionAttributes (UINT32 UpdateType);
BOOLEAN IsSuffixEmpty (Slot *CheckSlot);
EFI_STATUS SetActiveSlot (Slot *NewSlot, BOOLEAN ResetSuccessBit, BOOLEAN SetSuccessBit);
BOOLEAN IsSlotBootable (Slot *CheckSlot);
EFI_STATUS ClearUnbootable (Slot *CheckSlot);
UINT64 GetPartitionSize (EFI_BLOCK_IO_PROTOCOL *BlockIo);
INT32 GetPartitionIndex(CHAR16 *PartitionName);
BOOLEAN PartitionHasMultiSlot(CONST CHAR16 *Pname);
EFI_STATUS EnumeratePartitions(VOID);
VOID UpdatePartitionEntries(VOID);
VOID UpdatePartitionAttributes(UINT32 UpdateType);
BOOLEAN IsSuffixEmpty(Slot *CheckSlot);
EFI_STATUS
SetActiveSlot(Slot *NewSlot, BOOLEAN ResetSuccessBit, BOOLEAN SetSuccessBit);
BOOLEAN IsSlotBootable(Slot *CheckSlot);
EFI_STATUS ClearUnbootable(Slot *CheckSlot);
UINT64 GetPartitionSize(EFI_BLOCK_IO_PROTOCOL *BlockIo);
#endif

View File

@ -1,4 +1,5 @@
/* Copyright (c) 2015-2018, 2020-2021, The Linux Foundation. All rights reserved.
/* Copyright (c) 2015-2018, 2020-2021, The Linux Foundation. All rights
* reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
@ -24,32 +25,30 @@
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
*/
#ifndef __BSL_BOARD_H__
#define __BSL_BOARD_H__
#include <Uefi.h>
#include <Library/PrintLib.h>
#include <Library/BootSlotLib/EFICardInfo.h>
#include <Library/DebugLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/PrintLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Library/UefiLib.h>
#include <Library/BootSlotLib/EFICardInfo.h>
#include <Uefi.h>
#define HANDLE_MAX_INFO_LIST 128
typedef enum {
EMMC = 0,
UFS = 1,
UFS = 1,
UNKNOWN,
} MemCardType;
VOID
GetRootDeviceType (CHAR8 *StrDeviceType, UINT32 Len);
MemCardType
CheckRootDeviceType (VOID);
VOID GetRootDeviceType(CHAR8 *StrDeviceType, UINT32 Len);
MemCardType CheckRootDeviceType(VOID);
EFI_STATUS
UfsGetSetBootLun (UINT32 *UfsBootlun, BOOLEAN IsGet);
UfsGetSetBootLun(UINT32 *UfsBootlun, BOOLEAN IsGet);
#endif

View File

@ -2,40 +2,36 @@
#define _FRAMEBUFFER_SERIALPORT_LIB_H_
typedef struct _FBCON_POSITION {
INTN x;
INTN y;
INTN x;
INTN y;
} FBCON_POSITION, *PFBCON_POSITION;
typedef struct _FBCON_COLOR {
UINTN Foreground;
UINTN Background;
UINTN Foreground;
UINTN Background;
} FBCON_COLOR, *PFBCON_COLOR;
enum FbConMsgType {
/* type for menu */
FBCON_COMMON_MSG = 0,
FBCON_UNLOCK_TITLE_MSG,
FBCON_TITLE_MSG,
FBCON_SUBTITLE_MSG,
/* type for menu */
FBCON_COMMON_MSG = 0,
FBCON_UNLOCK_TITLE_MSG,
FBCON_TITLE_MSG,
FBCON_SUBTITLE_MSG,
/* type for warning */
FBCON_YELLOW_MSG,
FBCON_ORANGE_MSG,
FBCON_RED_MSG,
FBCON_GREEN_MSG,
/* type for warning */
FBCON_YELLOW_MSG,
FBCON_ORANGE_MSG,
FBCON_RED_MSG,
FBCON_GREEN_MSG,
/* and the select message's background */
FBCON_SELECT_MSG_BG_COLOR,
/* and the select message's background */
FBCON_SELECT_MSG_BG_COLOR,
};
void ResetFb(void);
UINTN
EFIAPI
SerialPortWriteCritical
(
IN UINT8 *Buffer,
IN UINTN NumberOfBytes
);
SerialPortWriteCritical(IN UINT8 *Buffer, IN UINTN NumberOfBytes);
#endif

View File

@ -1,14 +1,14 @@
#ifndef _FB_COLOR_H_
#define _FB_COLOR_H_
#define FB_BGRA8888_BLACK 0xff000000
#define FB_BGRA8888_WHITE 0xffffffff
#define FB_BGRA8888_CYAN 0xff00ffff
#define FB_BGRA8888_BLUE 0xff0000ff
#define FB_BGRA8888_SILVER 0xffc0c0c0
#define FB_BGRA8888_YELLOW 0xffffff00
#define FB_BGRA8888_ORANGE 0xffffa500
#define FB_BGRA8888_RED 0xffff0000
#define FB_BGRA8888_GREEN 0xff00ff00
#define FB_BGRA8888_BLACK 0xff000000
#define FB_BGRA8888_WHITE 0xffffffff
#define FB_BGRA8888_CYAN 0xff00ffff
#define FB_BGRA8888_BLUE 0xff0000ff
#define FB_BGRA8888_SILVER 0xffc0c0c0
#define FB_BGRA8888_YELLOW 0xffffff00
#define FB_BGRA8888_ORANGE 0xffffa500
#define FB_BGRA8888_RED 0xffff0000
#define FB_BGRA8888_GREEN 0xff00ff00
#endif

View File

@ -9,7 +9,7 @@
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
@ -19,7 +19,7 @@
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
@ -29,108 +29,44 @@
#ifndef _FONT_5x12_DATA_
#define _FONT_5x12_DATA_
#define FONT_WIDTH 5
#define FONT_HEIGHT 12
#define FONT_WIDTH 5
#define FONT_HEIGHT 12
#define SCALE_FACTOR 2
#define SCALE_FACTOR 2
unsigned font5x12[] = {
0x00000000, 0x00000000,
0x08421080, 0x00020084,
0x00052940, 0x00000000,
0x15f52800, 0x0000295f,
0x1c52f880, 0x00023e94,
0x08855640, 0x0004d542,
0x04528800, 0x000b2725,
0x00021080, 0x00000000,
0x04211088, 0x00821042,
0x10841082, 0x00221108,
0x09575480, 0x00000000,
0x3e420000, 0x00000084,
0x00000000, 0x00223000,
0x3e000000, 0x00000000,
0x00000000, 0x00471000,
0x08844200, 0x00008442,
0x2318a880, 0x00022a31,
0x08429880, 0x000f9084,
0x1108c5c0, 0x000f8444,
0x1c4443e0, 0x00074610,
0x14a62100, 0x000423e9,
0x26d087e0, 0x00074610,
0x1e10c5c0, 0x00074631,
0x088443e0, 0x00010844,
0x1d18c5c0, 0x00074631,
0x3d18c5c0, 0x00074610,
0x08e20000, 0x00471000,
0x08e20000, 0x00223000,
0x02222200, 0x00082082,
0x01f00000, 0x000003e0,
0x20820820, 0x00008888,
0x1108c5c0, 0x00020084,
0x2b98c5c0, 0x000f05b5,
0x2318a880, 0x0008c63f,
0x1d2949e0, 0x0007ca52,
0x0210c5c0, 0x00074421,
0x252949e0, 0x0007ca52,
0x1e1087e0, 0x000f8421,
0x1e1087e0, 0x00008421,
0x0210c5c0, 0x00074639,
0x3f18c620, 0x0008c631,
0x084211c0, 0x00071084,
0x10842380, 0x00032508,
0x0654c620, 0x0008c525,
0x02108420, 0x000f8421,
0x2b5dc620, 0x0008c631,
0x2b59ce20, 0x0008c739,
0x2318c5c0, 0x00074631,
0x1f18c5e0, 0x00008421,
0x2318c5c0, 0x01075631,
0x1f18c5e0, 0x0008c525,
0x1c10c5c0, 0x00074610,
0x084213e0, 0x00021084,
0x2318c620, 0x00074631,
0x1518c620, 0x0002114a,
0x2b18c620, 0x000556b5,
0x08a54620, 0x0008c54a,
0x08a54620, 0x00021084,
0x088443e0, 0x000f8442,
0x0421084e, 0x00e10842,
0x08210420, 0x00084108,
0x1084210e, 0x00e42108,
0x0008a880, 0x00000000,
0x00000000, 0x01f00000,
0x00000104, 0x00000000,
0x20e00000, 0x000b663e,
0x22f08420, 0x0007c631,
0x22e00000, 0x00074421,
0x23e84200, 0x000f4631,
0x22e00000, 0x0007443f,
0x1e214980, 0x00010842,
0x22e00000, 0x1d187a31,
0x26d08420, 0x0008c631,
0x08601000, 0x00071084,
0x10c02000, 0x0c94a108,
0x0a908420, 0x0008a4a3,
0x084210c0, 0x00071084,
0x2ab00000, 0x0008d6b5,
0x26d00000, 0x0008c631,
0x22e00000, 0x00074631,
0x22f00000, 0x0210be31,
0x23e00000, 0x21087a31,
0x26d00000, 0x00008421,
0x22e00000, 0x00074506,
0x04f10800, 0x00064842,
0x23100000, 0x000b6631,
0x23100000, 0x00022951,
0x23100000, 0x000556b5,
0x15100000, 0x0008a884,
0x23100000, 0x1d185b31,
0x11f00000, 0x000f8444,
0x06421098, 0x01821084,
0x08421080, 0x00021084,
0x30421083, 0x00321084,
0x0004d640, 0x00000000,
0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x08421080, 0x00020084, 0x00052940, 0x00000000,
0x15f52800, 0x0000295f, 0x1c52f880, 0x00023e94, 0x08855640, 0x0004d542,
0x04528800, 0x000b2725, 0x00021080, 0x00000000, 0x04211088, 0x00821042,
0x10841082, 0x00221108, 0x09575480, 0x00000000, 0x3e420000, 0x00000084,
0x00000000, 0x00223000, 0x3e000000, 0x00000000, 0x00000000, 0x00471000,
0x08844200, 0x00008442, 0x2318a880, 0x00022a31, 0x08429880, 0x000f9084,
0x1108c5c0, 0x000f8444, 0x1c4443e0, 0x00074610, 0x14a62100, 0x000423e9,
0x26d087e0, 0x00074610, 0x1e10c5c0, 0x00074631, 0x088443e0, 0x00010844,
0x1d18c5c0, 0x00074631, 0x3d18c5c0, 0x00074610, 0x08e20000, 0x00471000,
0x08e20000, 0x00223000, 0x02222200, 0x00082082, 0x01f00000, 0x000003e0,
0x20820820, 0x00008888, 0x1108c5c0, 0x00020084, 0x2b98c5c0, 0x000f05b5,
0x2318a880, 0x0008c63f, 0x1d2949e0, 0x0007ca52, 0x0210c5c0, 0x00074421,
0x252949e0, 0x0007ca52, 0x1e1087e0, 0x000f8421, 0x1e1087e0, 0x00008421,
0x0210c5c0, 0x00074639, 0x3f18c620, 0x0008c631, 0x084211c0, 0x00071084,
0x10842380, 0x00032508, 0x0654c620, 0x0008c525, 0x02108420, 0x000f8421,
0x2b5dc620, 0x0008c631, 0x2b59ce20, 0x0008c739, 0x2318c5c0, 0x00074631,
0x1f18c5e0, 0x00008421, 0x2318c5c0, 0x01075631, 0x1f18c5e0, 0x0008c525,
0x1c10c5c0, 0x00074610, 0x084213e0, 0x00021084, 0x2318c620, 0x00074631,
0x1518c620, 0x0002114a, 0x2b18c620, 0x000556b5, 0x08a54620, 0x0008c54a,
0x08a54620, 0x00021084, 0x088443e0, 0x000f8442, 0x0421084e, 0x00e10842,
0x08210420, 0x00084108, 0x1084210e, 0x00e42108, 0x0008a880, 0x00000000,
0x00000000, 0x01f00000, 0x00000104, 0x00000000, 0x20e00000, 0x000b663e,
0x22f08420, 0x0007c631, 0x22e00000, 0x00074421, 0x23e84200, 0x000f4631,
0x22e00000, 0x0007443f, 0x1e214980, 0x00010842, 0x22e00000, 0x1d187a31,
0x26d08420, 0x0008c631, 0x08601000, 0x00071084, 0x10c02000, 0x0c94a108,
0x0a908420, 0x0008a4a3, 0x084210c0, 0x00071084, 0x2ab00000, 0x0008d6b5,
0x26d00000, 0x0008c631, 0x22e00000, 0x00074631, 0x22f00000, 0x0210be31,
0x23e00000, 0x21087a31, 0x26d00000, 0x00008421, 0x22e00000, 0x00074506,
0x04f10800, 0x00064842, 0x23100000, 0x000b6631, 0x23100000, 0x00022951,
0x23100000, 0x000556b5, 0x15100000, 0x0008a884, 0x23100000, 0x1d185b31,
0x11f00000, 0x000f8444, 0x06421098, 0x01821084, 0x08421080, 0x00021084,
0x30421083, 0x00321084, 0x0004d640, 0x00000000, 0x00000000, 0x00000000,
};
#endif

View File

@ -1,32 +1,30 @@
/** @file
* File managing the MMU for ARMv8 architecture
*
* Copyright (c) 2011-2014, ARM Limited. All rights reserved.
* Copyright (c) 2016, Linaro Limited. All rights reserved.
* Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
*
* SPDX-License-Identifier: BSD-2-Clause-Patent
*
**/
* File managing the MMU for ARMv8 architecture
*
* Copyright (c) 2011-2014, ARM Limited. All rights reserved.
* Copyright (c) 2016, Linaro Limited. All rights reserved.
* Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
*
* SPDX-License-Identifier: BSD-2-Clause-Patent
*
**/
#include <Uefi.h>
#include <Chipset/AArch64.h>
#include <Library/BaseMemoryLib.h>
#include <Library/CacheMaintenanceLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/ArmLib.h>
#include <Library/ArmMmuLib.h>
#include <Library/BaseLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/CacheMaintenanceLib.h>
#include <Library/DebugLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Uefi.h>
// We use this index definition to define an invalid block entry
#define TT_ATTR_INDX_INVALID ((UINT32)~0)
#define TT_ATTR_INDX_INVALID ((UINT32)~0)
STATIC
UINT64
ArmMemoryAttributeToPageAttribute (
IN ARM_MEMORY_REGION_ATTRIBUTES Attributes
)
ArmMemoryAttributeToPageAttribute(IN ARM_MEMORY_REGION_ATTRIBUTES Attributes)
{
switch (Attributes) {
case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK_NONSHAREABLE:
@ -50,7 +48,7 @@ ArmMemoryAttributeToPageAttribute (
ASSERT(0);
case ARM_MEMORY_REGION_ATTRIBUTE_DEVICE:
case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_DEVICE:
if (ArmReadCurrentEL () == AARCH64_EL2)
if (ArmReadCurrentEL() == AARCH64_EL2)
return TT_ATTR_INDX_DEVICE_MEMORY | TT_XN_MASK;
else
return TT_ATTR_INDX_DEVICE_MEMORY | TT_UXN_MASK | TT_PXN_MASK;
@ -58,11 +56,9 @@ ArmMemoryAttributeToPageAttribute (
}
UINT64
PageAttributeToGcdAttribute (
IN UINT64 PageAttributes
)
PageAttributeToGcdAttribute(IN UINT64 PageAttributes)
{
UINT64 GcdAttributes;
UINT64 GcdAttributes;
switch (PageAttributes & TT_ATTR_INDX_MASK) {
case TT_ATTR_INDX_DEVICE_MEMORY:
@ -78,36 +74,36 @@ PageAttributeToGcdAttribute (
GcdAttributes = EFI_MEMORY_WB;
break;
default:
DEBUG ((EFI_D_ERROR, "PageAttributeToGcdAttribute: PageAttributes:0x%lX not supported.\n", PageAttributes));
ASSERT (0);
DEBUG(
(EFI_D_ERROR,
"PageAttributeToGcdAttribute: PageAttributes:0x%lX not supported.\n",
PageAttributes));
ASSERT(0);
// The Global Coherency Domain (GCD) value is defined as a bit set.
// Returning 0 means no attribute has been set.
GcdAttributes = 0;
}
// Determine protection attributes
if (((PageAttributes & TT_AP_MASK) == TT_AP_NO_RO) || ((PageAttributes & TT_AP_MASK) == TT_AP_RO_RO)) {
if (((PageAttributes & TT_AP_MASK) == TT_AP_NO_RO) ||
((PageAttributes & TT_AP_MASK) == TT_AP_RO_RO)) {
// Read only cases map to write-protect
GcdAttributes |= EFI_MEMORY_RO;
}
// Process eXecute Never attribute
if ((PageAttributes & (TT_PXN_MASK | TT_UXN_MASK)) != 0 ) {
if ((PageAttributes & (TT_PXN_MASK | TT_UXN_MASK)) != 0) {
GcdAttributes |= EFI_MEMORY_XP;
}
return GcdAttributes;
}
#define MIN_T0SZ 16
#define BITS_PER_LEVEL 9
#define MIN_T0SZ 16
#define BITS_PER_LEVEL 9
VOID
GetRootTranslationTableInfo (
IN UINTN T0SZ,
OUT UINTN *TableLevel,
OUT UINTN *TableEntryCount
)
VOID GetRootTranslationTableInfo(
IN UINTN T0SZ, OUT UINTN *TableLevel, OUT UINTN *TableEntryCount)
{
// Get the level of the root table
if (TableLevel) {
@ -115,7 +111,8 @@ GetRootTranslationTableInfo (
}
if (TableEntryCount) {
*TableEntryCount = 1UL << (BITS_PER_LEVEL - (T0SZ - MIN_T0SZ) % BITS_PER_LEVEL);
*TableEntryCount =
1UL << (BITS_PER_LEVEL - (T0SZ - MIN_T0SZ) % BITS_PER_LEVEL);
}
}
@ -137,17 +134,13 @@ ReplaceLiveEntry (
*/
STATIC
VOID
LookupAddresstoRootTable (
IN UINT64 MaxAddress,
OUT UINTN *T0SZ,
OUT UINTN *TableEntryCount
)
VOID LookupAddresstoRootTable(
IN UINT64 MaxAddress, OUT UINTN *T0SZ, OUT UINTN *TableEntryCount)
{
UINTN TopBit;
// Check the parameters are not NULL
ASSERT ((T0SZ != NULL) && (TableEntryCount != NULL));
ASSERT((T0SZ != NULL) && (TableEntryCount != NULL));
// Look for the highest bit set in MaxAddress
for (TopBit = 63; TopBit != 0; TopBit--) {
@ -157,24 +150,19 @@ LookupAddresstoRootTable (
break;
}
}
ASSERT (TopBit != 0);
ASSERT(TopBit != 0);
// Calculate T0SZ from the top bit of the MaxAddress
*T0SZ = 64 - TopBit;
// Get the Table info from T0SZ
GetRootTranslationTableInfo (*T0SZ, NULL, TableEntryCount);
GetRootTranslationTableInfo(*T0SZ, NULL, TableEntryCount);
}
STATIC
UINT64*
GetBlockEntryListFromAddress (
IN UINT64 *RootTable,
IN UINT64 RegionStart,
OUT UINTN *TableLevel,
IN OUT UINT64 *BlockEntrySize,
OUT UINT64 **LastBlockEntry
)
UINT64 *GetBlockEntryListFromAddress(
IN UINT64 *RootTable, IN UINT64 RegionStart, OUT UINTN *TableLevel,
IN OUT UINT64 *BlockEntrySize, OUT UINT64 **LastBlockEntry)
{
UINTN RootTableLevel;
UINTN RootTableEntryCount;
@ -195,65 +183,72 @@ GetBlockEntryListFromAddress (
// Ensure the parameters are valid
if (!(TableLevel && BlockEntrySize && LastBlockEntry)) {
ASSERT_EFI_ERROR (EFI_INVALID_PARAMETER);
ASSERT_EFI_ERROR(EFI_INVALID_PARAMETER);
return NULL;
}
// Ensure the Region is aligned on 4KB boundary
if ((RegionStart & (SIZE_4KB - 1)) != 0) {
ASSERT_EFI_ERROR (EFI_INVALID_PARAMETER);
ASSERT_EFI_ERROR(EFI_INVALID_PARAMETER);
return NULL;
}
// Ensure the required size is aligned on 4KB boundary and not 0
if ((*BlockEntrySize & (SIZE_4KB - 1)) != 0 || *BlockEntrySize == 0) {
ASSERT_EFI_ERROR (EFI_INVALID_PARAMETER);
ASSERT_EFI_ERROR(EFI_INVALID_PARAMETER);
return NULL;
}
T0SZ = ArmGetTCR () & TCR_T0SZ_MASK;
T0SZ = ArmGetTCR() & TCR_T0SZ_MASK;
// Get the Table info from T0SZ
GetRootTranslationTableInfo (T0SZ, &RootTableLevel, &RootTableEntryCount);
GetRootTranslationTableInfo(T0SZ, &RootTableLevel, &RootTableEntryCount);
// If the start address is 0x0 then we use the size of the region to identify the alignment
// If the start address is 0x0 then we use the size of the region to identify
// the alignment
if (RegionStart == 0) {
// Identify the highest possible alignment for the Region Size
BaseAddressAlignment = LowBitSet64 (*BlockEntrySize);
} else {
BaseAddressAlignment = LowBitSet64(*BlockEntrySize);
}
else {
// Identify the highest possible alignment for the Base Address
BaseAddressAlignment = LowBitSet64 (RegionStart);
BaseAddressAlignment = LowBitSet64(RegionStart);
}
// Identify the Page Level the RegionStart must belong to. Note that PageLevel
// should be at least 1 since block translations are not supported at level 0
PageLevel = MAX (3 - ((BaseAddressAlignment - 12) / 9), 1);
PageLevel = MAX(3 - ((BaseAddressAlignment - 12) / 9), 1);
// If the required size is smaller than the current block size then we need to go to the page below.
// The PageLevel was calculated on the Base Address alignment but did not take in account the alignment
// of the allocation size
while (*BlockEntrySize < TT_BLOCK_ENTRY_SIZE_AT_LEVEL (PageLevel)) {
// If the required size is smaller than the current block size then we need to
// go to the page below. The PageLevel was calculated on the Base Address
// alignment but did not take in account the alignment of the allocation size
while (*BlockEntrySize < TT_BLOCK_ENTRY_SIZE_AT_LEVEL(PageLevel)) {
// It does not fit so we need to go a page level above
PageLevel++;
}
//
// Get the Table Descriptor for the corresponding PageLevel. We need to decompose RegionStart to get appropriate entries
// Get the Table Descriptor for the corresponding PageLevel. We need to
// decompose RegionStart to get appropriate entries
//
TranslationTable = RootTable;
for (IndexLevel = RootTableLevel; IndexLevel <= PageLevel; IndexLevel++) {
BlockEntry = (UINT64*)TT_GET_ENTRY_FOR_ADDRESS (TranslationTable, IndexLevel, RegionStart);
BlockEntry = (UINT64 *)TT_GET_ENTRY_FOR_ADDRESS(
TranslationTable, IndexLevel, RegionStart);
if ((IndexLevel != 3) && ((*BlockEntry & TT_TYPE_MASK) == TT_TYPE_TABLE_ENTRY)) {
if ((IndexLevel != 3) &&
((*BlockEntry & TT_TYPE_MASK) == TT_TYPE_TABLE_ENTRY)) {
// Go to the next table
TranslationTable = (UINT64*)(*BlockEntry & TT_ADDRESS_MASK_DESCRIPTION_TABLE);
TranslationTable =
(UINT64 *)(*BlockEntry & TT_ADDRESS_MASK_DESCRIPTION_TABLE);
// If we are at the last level then update the last level to next level
if (IndexLevel == PageLevel) {
// Enter the next level
PageLevel++;
}
} else if ((*BlockEntry & TT_TYPE_MASK) == TT_TYPE_BLOCK_ENTRY) {
}
else if ((*BlockEntry & TT_TYPE_MASK) == TT_TYPE_BLOCK_ENTRY) {
// If we are not at the last level then we need to split this BlockEntry
if (IndexLevel != PageLevel) {
// Retrieve the attributes from the block entry
@ -267,19 +262,22 @@ GetBlockEntryListFromAddress (
// Get the address corresponding at this entry
BlockEntryAddress = RegionStart;
BlockEntryAddress = BlockEntryAddress >> TT_ADDRESS_OFFSET_AT_LEVEL(IndexLevel);
BlockEntryAddress =
BlockEntryAddress >> TT_ADDRESS_OFFSET_AT_LEVEL(IndexLevel);
// Shift back to right to set zero before the effective address
BlockEntryAddress = BlockEntryAddress << TT_ADDRESS_OFFSET_AT_LEVEL(IndexLevel);
BlockEntryAddress = BlockEntryAddress
<< TT_ADDRESS_OFFSET_AT_LEVEL(IndexLevel);
// Set the correct entry type for the next page level
if ((IndexLevel + 1) == 3) {
Attributes |= TT_TYPE_BLOCK_ENTRY_LEVEL3;
} else {
}
else {
Attributes |= TT_TYPE_BLOCK_ENTRY;
}
// Create a new translation table
TranslationTable = AllocatePages (1);
TranslationTable = AllocatePages(1);
if (TranslationTable == NULL) {
return NULL;
}
@ -287,29 +285,38 @@ GetBlockEntryListFromAddress (
// Populate the newly created lower level table
SubTableBlockEntry = TranslationTable;
for (Index = 0; Index < TT_ENTRY_COUNT; Index++) {
*SubTableBlockEntry = Attributes | (BlockEntryAddress + (Index << TT_ADDRESS_OFFSET_AT_LEVEL(IndexLevel + 1)));
*SubTableBlockEntry =
Attributes |
(BlockEntryAddress +
(Index << TT_ADDRESS_OFFSET_AT_LEVEL(IndexLevel + 1)));
SubTableBlockEntry++;
}
// Fill the BlockEntry with the new TranslationTable
*BlockEntry = ((UINTN)TranslationTable & TT_ADDRESS_MASK_DESCRIPTION_TABLE) | TableAttributes | TT_TYPE_TABLE_ENTRY;
*BlockEntry =
((UINTN)TranslationTable & TT_ADDRESS_MASK_DESCRIPTION_TABLE) |
TableAttributes | TT_TYPE_TABLE_ENTRY;
}
} else {
}
else {
if (IndexLevel != PageLevel) {
//
// Case when we have an Invalid Entry and we are at a page level above of the one targetted.
// Case when we have an Invalid Entry and we are at a page level above
// of the one targetted.
//
// Create a new translation table
TranslationTable = AllocatePages (1);
TranslationTable = AllocatePages(1);
if (TranslationTable == NULL) {
return NULL;
}
ZeroMem (TranslationTable, TT_ENTRY_COUNT * sizeof(UINT64));
ZeroMem(TranslationTable, TT_ENTRY_COUNT * sizeof(UINT64));
// Fill the new BlockEntry with the TranslationTable
*BlockEntry = ((UINTN)TranslationTable & TT_ADDRESS_MASK_DESCRIPTION_TABLE) | TT_TYPE_TABLE_ENTRY;
*BlockEntry =
((UINTN)TranslationTable & TT_ADDRESS_MASK_DESCRIPTION_TABLE) |
TT_TYPE_TABLE_ENTRY;
}
}
}
@ -317,12 +324,15 @@ GetBlockEntryListFromAddress (
// Expose the found PageLevel to the caller
*TableLevel = PageLevel;
// Now, we have the Table Level we can get the Block Size associated to this table
*BlockEntrySize = TT_BLOCK_ENTRY_SIZE_AT_LEVEL (PageLevel);
// Now, we have the Table Level we can get the Block Size associated to this
// table
*BlockEntrySize = TT_BLOCK_ENTRY_SIZE_AT_LEVEL(PageLevel);
// The last block of the root table depends on the number of entry in this table,
// otherwise it is always the (TT_ENTRY_COUNT - 1)th entry in the table.
*LastBlockEntry = TT_LAST_BLOCK_ADDRESS(TranslationTable,
// The last block of the root table depends on the number of entry in this
// table, otherwise it is always the (TT_ENTRY_COUNT - 1)th entry in the
// table.
*LastBlockEntry = TT_LAST_BLOCK_ADDRESS(
TranslationTable,
(PageLevel == RootTableLevel) ? RootTableEntryCount : TT_ENTRY_COUNT);
return BlockEntry;
@ -330,48 +340,49 @@ GetBlockEntryListFromAddress (
STATIC
EFI_STATUS
UpdateRegionMapping (
IN UINT64 *RootTable,
IN UINT64 RegionStart,
IN UINT64 RegionLength,
IN UINT64 Attributes,
IN UINT64 BlockEntryMask
)
UpdateRegionMapping(
IN UINT64 *RootTable, IN UINT64 RegionStart, IN UINT64 RegionLength,
IN UINT64 Attributes, IN UINT64 BlockEntryMask)
{
UINT32 Type;
UINT64 *BlockEntry;
UINT64 *LastBlockEntry;
UINT64 *BlockEntry;
UINT64 *LastBlockEntry;
UINT64 BlockEntrySize;
UINTN TableLevel;
// Ensure the Length is aligned on 4KB boundary
if ((RegionLength == 0) || ((RegionLength & (SIZE_4KB - 1)) != 0)) {
ASSERT_EFI_ERROR (EFI_INVALID_PARAMETER);
ASSERT_EFI_ERROR(EFI_INVALID_PARAMETER);
return EFI_INVALID_PARAMETER;
}
do {
// Get the first Block Entry that matches the Virtual Address and also the information on the Table Descriptor
// such as the size of the Block Entry and the address of the last BlockEntry of the Table Descriptor
// Get the first Block Entry that matches the Virtual Address and also the
// information on the Table Descriptor such as the size of the Block Entry
// and the address of the last BlockEntry of the Table Descriptor
BlockEntrySize = RegionLength;
BlockEntry = GetBlockEntryListFromAddress (RootTable, RegionStart, &TableLevel, &BlockEntrySize, &LastBlockEntry);
BlockEntry = GetBlockEntryListFromAddress(
RootTable, RegionStart, &TableLevel, &BlockEntrySize, &LastBlockEntry);
if (BlockEntry == NULL) {
// GetBlockEntryListFromAddress() return NULL when it fails to allocate new pages from the Translation Tables
// GetBlockEntryListFromAddress() return NULL when it fails to allocate
// new pages from the Translation Tables
return EFI_OUT_OF_RESOURCES;
}
if (TableLevel != 3) {
Type = TT_TYPE_BLOCK_ENTRY;
} else {
}
else {
Type = TT_TYPE_BLOCK_ENTRY_LEVEL3;
}
do {
// Fill the Block Entry with attribute and output block address
*BlockEntry &= BlockEntryMask;
*BlockEntry |= (RegionStart & TT_ADDRESS_MASK_BLOCK_ENTRY) | Attributes | Type;
*BlockEntry |=
(RegionStart & TT_ADDRESS_MASK_BLOCK_ENTRY) | Attributes | Type;
ArmUpdateTranslationTableEntry (BlockEntry, (VOID *)RegionStart);
ArmUpdateTranslationTableEntry(BlockEntry, (VOID *)RegionStart);
// Go to the next BlockEntry
RegionStart += BlockEntrySize;
@ -382,9 +393,10 @@ UpdateRegionMapping (
// Rerun GetBlockEntryListFromAddress to avoid page table memory leak
if (TableLevel != 3 && BlockEntry <= LastBlockEntry &&
(*BlockEntry & TT_TYPE_MASK) == TT_TYPE_TABLE_ENTRY) {
break;
break;
}
} while ((RegionLength >= BlockEntrySize) && (BlockEntry <= LastBlockEntry));
} while ((RegionLength >= BlockEntrySize) &&
(BlockEntry <= LastBlockEntry));
} while (RegionLength != 0);
return EFI_SUCCESS;
@ -392,25 +404,17 @@ UpdateRegionMapping (
STATIC
EFI_STATUS
FillTranslationTable (
IN UINT64 *RootTable,
IN ARM_MEMORY_REGION_DESCRIPTOR *MemoryRegion
)
FillTranslationTable(
IN UINT64 *RootTable, IN ARM_MEMORY_REGION_DESCRIPTOR *MemoryRegion)
{
return UpdateRegionMapping (
RootTable,
MemoryRegion->VirtualBase,
MemoryRegion->Length,
ArmMemoryAttributeToPageAttribute (MemoryRegion->Attributes) | TT_AF,
0
);
return UpdateRegionMapping(
RootTable, MemoryRegion->VirtualBase, MemoryRegion->Length,
ArmMemoryAttributeToPageAttribute(MemoryRegion->Attributes) | TT_AF, 0);
}
STATIC
UINT64
GcdAttributeToPageAttribute (
IN UINT64 GcdAttributes
)
GcdAttributeToPageAttribute(IN UINT64 GcdAttributes)
{
UINT64 PageAttributes;
@ -434,9 +438,10 @@ GcdAttributeToPageAttribute (
if ((GcdAttributes & EFI_MEMORY_XP) != 0 ||
(GcdAttributes & EFI_MEMORY_CACHETYPE_MASK) == EFI_MEMORY_UC) {
if (ArmReadCurrentEL () == AARCH64_EL2) {
if (ArmReadCurrentEL() == AARCH64_EL2) {
PageAttributes |= TT_XN_MASK;
} else {
}
else {
PageAttributes |= TT_UXN_MASK | TT_PXN_MASK;
}
}
@ -449,18 +454,15 @@ GcdAttributeToPageAttribute (
}
EFI_STATUS
ArmSetMemoryAttributes (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN UINT64 Attributes
)
ArmSetMemoryAttributes(
IN EFI_PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length, IN UINT64 Attributes)
{
EFI_STATUS Status;
UINT64 *TranslationTable;
UINT64 PageAttributes;
UINT64 PageAttributeMask;
EFI_STATUS Status;
UINT64 * TranslationTable;
UINT64 PageAttributes;
UINT64 PageAttributeMask;
PageAttributes = GcdAttributeToPageAttribute (Attributes);
PageAttributes = GcdAttributeToPageAttribute(Attributes);
PageAttributeMask = 0;
if ((Attributes & EFI_MEMORY_CACHETYPE_MASK) == 0) {
@ -469,19 +471,15 @@ ArmSetMemoryAttributes (
// permissions only.
//
PageAttributes &= TT_AP_MASK | TT_UXN_MASK | TT_PXN_MASK;
PageAttributeMask = ~(TT_ADDRESS_MASK_BLOCK_ENTRY | TT_AP_MASK |
TT_PXN_MASK | TT_XN_MASK);
PageAttributeMask =
~(TT_ADDRESS_MASK_BLOCK_ENTRY | TT_AP_MASK | TT_PXN_MASK | TT_XN_MASK);
}
TranslationTable = ArmGetTTBR0BaseAddress ();
TranslationTable = ArmGetTTBR0BaseAddress();
Status = UpdateRegionMapping (
TranslationTable,
BaseAddress,
Length,
PageAttributes,
PageAttributeMask);
if (EFI_ERROR (Status)) {
Status = UpdateRegionMapping(
TranslationTable, BaseAddress, Length, PageAttributes, PageAttributeMask);
if (EFI_ERROR(Status)) {
return Status;
}
@ -490,20 +488,18 @@ ArmSetMemoryAttributes (
STATIC
EFI_STATUS
SetMemoryRegionAttribute (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN UINT64 Attributes,
IN UINT64 BlockEntryMask
)
SetMemoryRegionAttribute(
IN EFI_PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length, IN UINT64 Attributes,
IN UINT64 BlockEntryMask)
{
EFI_STATUS Status;
UINT64 *RootTable;
EFI_STATUS Status;
UINT64 * RootTable;
RootTable = ArmGetTTBR0BaseAddress ();
RootTable = ArmGetTTBR0BaseAddress();
Status = UpdateRegionMapping (RootTable, BaseAddress, Length, Attributes, BlockEntryMask);
if (EFI_ERROR (Status)) {
Status = UpdateRegionMapping(
RootTable, BaseAddress, Length, Attributes, BlockEntryMask);
if (EFI_ERROR(Status)) {
return Status;
}
@ -511,88 +507,67 @@ SetMemoryRegionAttribute (
}
EFI_STATUS
ArmSetMemoryRegionNoExec (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
ArmSetMemoryRegionNoExec(IN EFI_PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length)
{
UINT64 Val;
UINT64 Val;
if (ArmReadCurrentEL () == AARCH64_EL1) {
if (ArmReadCurrentEL() == AARCH64_EL1) {
Val = TT_PXN_MASK | TT_UXN_MASK;
} else {
}
else {
Val = TT_XN_MASK;
}
return SetMemoryRegionAttribute (
BaseAddress,
Length,
Val,
~TT_ADDRESS_MASK_BLOCK_ENTRY);
return SetMemoryRegionAttribute(
BaseAddress, Length, Val, ~TT_ADDRESS_MASK_BLOCK_ENTRY);
}
EFI_STATUS
ArmClearMemoryRegionNoExec (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
ArmClearMemoryRegionNoExec(
IN EFI_PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length)
{
UINT64 Mask;
// XN maps to UXN in the EL1&0 translation regime
Mask = ~(TT_ADDRESS_MASK_BLOCK_ENTRY | TT_PXN_MASK | TT_XN_MASK);
return SetMemoryRegionAttribute (
BaseAddress,
Length,
0,
Mask);
return SetMemoryRegionAttribute(BaseAddress, Length, 0, Mask);
}
EFI_STATUS
ArmSetMemoryRegionReadOnly (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
ArmSetMemoryRegionReadOnly(
IN EFI_PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length)
{
return SetMemoryRegionAttribute (
BaseAddress,
Length,
TT_AP_RO_RO,
~TT_ADDRESS_MASK_BLOCK_ENTRY);
return SetMemoryRegionAttribute(
BaseAddress, Length, TT_AP_RO_RO, ~TT_ADDRESS_MASK_BLOCK_ENTRY);
}
EFI_STATUS
ArmClearMemoryRegionReadOnly (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
ArmClearMemoryRegionReadOnly(
IN EFI_PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length)
{
return SetMemoryRegionAttribute (
BaseAddress,
Length,
TT_AP_RW_RW,
~(TT_ADDRESS_MASK_BLOCK_ENTRY | TT_AP_MASK));
return SetMemoryRegionAttribute(
BaseAddress, Length, TT_AP_RW_RW,
~(TT_ADDRESS_MASK_BLOCK_ENTRY | TT_AP_MASK));
}
EFI_STATUS
EFIAPI
ArmConfigureMmu (
IN ARM_MEMORY_REGION_DESCRIPTOR *MemoryTable,
OUT VOID **TranslationTableBase OPTIONAL,
OUT UINTN *TranslationTableSize OPTIONAL
)
ArmConfigureMmu(
IN ARM_MEMORY_REGION_DESCRIPTOR *MemoryTable,
OUT VOID **TranslationTableBase OPTIONAL,
OUT UINTN *TranslationTableSize OPTIONAL)
{
VOID* TranslationTable;
UINT32 TranslationTableAttribute;
UINT64 MaxAddress;
UINTN T0SZ;
UINTN RootTableEntryCount;
UINT64 TCR;
EFI_STATUS Status;
VOID * TranslationTable;
UINT32 TranslationTableAttribute;
UINT64 MaxAddress;
UINTN T0SZ;
UINTN RootTableEntryCount;
UINT64 TCR;
EFI_STATUS Status;
if(MemoryTable == NULL) {
ASSERT (MemoryTable != NULL);
if (MemoryTable == NULL) {
ASSERT(MemoryTable != NULL);
return EFI_INVALID_PARAMETER;
}
@ -603,63 +578,86 @@ ArmConfigureMmu (
// into account the architectural limitations that result from UEFI's
// use of 4 KB pages.
//
MaxAddress = MIN (LShiftU64 (1ULL, ArmGetPhysicalAddressBits ()) - 1,
MAX_ALLOC_ADDRESS);
MaxAddress =
MIN(LShiftU64(1ULL, ArmGetPhysicalAddressBits()) - 1, MAX_ALLOC_ADDRESS);
// Lookup the Table Level to get the information
LookupAddresstoRootTable (MaxAddress, &T0SZ, &RootTableEntryCount);
LookupAddresstoRootTable(MaxAddress, &T0SZ, &RootTableEntryCount);
//
// Set TCR that allows us to retrieve T0SZ in the subsequent functions
//
// Ideally we will be running at EL2, but should support EL1 as well.
// UEFI should not run at EL3.
if (ArmReadCurrentEL () == AARCH64_EL2) {
//Note: Bits 23 and 31 are reserved(RES1) bits in TCR_EL2
if (ArmReadCurrentEL() == AARCH64_EL2) {
// Note: Bits 23 and 31 are reserved(RES1) bits in TCR_EL2
TCR = T0SZ | (1UL << 31) | (1UL << 23) | TCR_TG0_4KB;
// Set the Physical Address Size using MaxAddress
if (MaxAddress < SIZE_4GB) {
TCR |= TCR_PS_4GB;
} else if (MaxAddress < SIZE_64GB) {
}
else if (MaxAddress < SIZE_64GB) {
TCR |= TCR_PS_64GB;
} else if (MaxAddress < SIZE_1TB) {
}
else if (MaxAddress < SIZE_1TB) {
TCR |= TCR_PS_1TB;
} else if (MaxAddress < SIZE_4TB) {
}
else if (MaxAddress < SIZE_4TB) {
TCR |= TCR_PS_4TB;
} else if (MaxAddress < SIZE_16TB) {
}
else if (MaxAddress < SIZE_16TB) {
TCR |= TCR_PS_16TB;
} else if (MaxAddress < SIZE_256TB) {
}
else if (MaxAddress < SIZE_256TB) {
TCR |= TCR_PS_256TB;
} else {
DEBUG ((EFI_D_ERROR, "ArmConfigureMmu: The MaxAddress 0x%lX is not supported by this MMU configuration.\n", MaxAddress));
ASSERT (0); // Bigger than 48-bit memory space are not supported
}
else {
DEBUG(
(EFI_D_ERROR,
"ArmConfigureMmu: The MaxAddress 0x%lX is not supported by this MMU "
"configuration.\n",
MaxAddress));
ASSERT(0); // Bigger than 48-bit memory space are not supported
return EFI_UNSUPPORTED;
}
} else if (ArmReadCurrentEL () == AARCH64_EL1) {
// Due to Cortex-A57 erratum #822227 we must set TG1[1] == 1, regardless of EPD1.
}
else if (ArmReadCurrentEL() == AARCH64_EL1) {
// Due to Cortex-A57 erratum #822227 we must set TG1[1] == 1, regardless of
// EPD1.
TCR = T0SZ | TCR_TG0_4KB | TCR_TG1_4KB | TCR_EPD1;
// Set the Physical Address Size using MaxAddress
if (MaxAddress < SIZE_4GB) {
TCR |= TCR_IPS_4GB;
} else if (MaxAddress < SIZE_64GB) {
}
else if (MaxAddress < SIZE_64GB) {
TCR |= TCR_IPS_64GB;
} else if (MaxAddress < SIZE_1TB) {
}
else if (MaxAddress < SIZE_1TB) {
TCR |= TCR_IPS_1TB;
} else if (MaxAddress < SIZE_4TB) {
}
else if (MaxAddress < SIZE_4TB) {
TCR |= TCR_IPS_4TB;
} else if (MaxAddress < SIZE_16TB) {
}
else if (MaxAddress < SIZE_16TB) {
TCR |= TCR_IPS_16TB;
} else if (MaxAddress < SIZE_256TB) {
}
else if (MaxAddress < SIZE_256TB) {
TCR |= TCR_IPS_256TB;
} else {
DEBUG ((EFI_D_ERROR, "ArmConfigureMmu: The MaxAddress 0x%lX is not supported by this MMU configuration.\n", MaxAddress));
ASSERT (0); // Bigger than 48-bit memory space are not supported
}
else {
DEBUG(
(EFI_D_ERROR,
"ArmConfigureMmu: The MaxAddress 0x%lX is not supported by this MMU "
"configuration.\n",
MaxAddress));
ASSERT(0); // Bigger than 48-bit memory space are not supported
return EFI_UNSUPPORTED;
}
} else {
ASSERT (0); // UEFI is only expected to run at EL2 and EL1, not EL3.
}
else {
ASSERT(0); // UEFI is only expected to run at EL2 and EL1, not EL3.
return EFI_UNSUPPORTED;
}
@ -672,22 +670,22 @@ ArmConfigureMmu (
// assert below that that matches the attributes we use for CPU accesses to
// the region.
//
TCR |= TCR_SH_INNER_SHAREABLE |
TCR_RGN_OUTER_WRITE_BACK_ALLOC |
TCR |= TCR_SH_INNER_SHAREABLE | TCR_RGN_OUTER_WRITE_BACK_ALLOC |
TCR_RGN_INNER_WRITE_BACK_ALLOC;
// Set TCR
ArmSetTCR (TCR);
ArmSetTCR(TCR);
// Allocate pages for translation table
TranslationTable = AllocatePages (1);
TranslationTable = AllocatePages(1);
if (TranslationTable == NULL) {
return EFI_OUT_OF_RESOURCES;
}
// We set TTBR0 just after allocating the table to retrieve its location from the subsequent
// functions without needing to pass this value across the functions. The MMU is only enabled
// after the translation tables are populated.
ArmSetTTBR0 (TranslationTable);
// We set TTBR0 just after allocating the table to retrieve its location from
// the subsequent functions without needing to pass this value across the
// functions. The MMU is only enabled after the translation tables are
// populated.
ArmSetTTBR0(TranslationTable);
if (TranslationTableBase != NULL) {
*TranslationTableBase = TranslationTable;
@ -697,67 +695,76 @@ ArmConfigureMmu (
*TranslationTableSize = RootTableEntryCount * sizeof(UINT64);
}
ZeroMem (TranslationTable, RootTableEntryCount * sizeof(UINT64));
ZeroMem(TranslationTable, RootTableEntryCount * sizeof(UINT64));
// Disable MMU and caches. ArmDisableMmu() also invalidates the TLBs
ArmDisableMmu ();
ArmDisableDataCache ();
ArmDisableInstructionCache ();
ArmDisableMmu();
ArmDisableDataCache();
ArmDisableInstructionCache();
// Make sure nothing sneaked into the cache
ArmCleanInvalidateDataCache ();
ArmInvalidateInstructionCache ();
ArmCleanInvalidateDataCache();
ArmInvalidateInstructionCache();
TranslationTableAttribute = TT_ATTR_INDX_INVALID;
UINTN idx = 0;
UINTN idx = 0;
while (MemoryTable->Length != 0) {
if ((MemoryTable->Length & (SIZE_4KB - 1)) != 0) {
DEBUG ((DEBUG_ERROR, "bruh: %d\n", idx));
DEBUG((DEBUG_ERROR, "bruh: %d\n", idx));
}
DEBUG_CODE_BEGIN ();
// Find the memory attribute for the Translation Table
if ((UINTN)TranslationTable >= MemoryTable->PhysicalBase &&
(UINTN)TranslationTable + EFI_PAGE_SIZE <= MemoryTable->PhysicalBase +
MemoryTable->Length) {
TranslationTableAttribute = MemoryTable->Attributes;
}
DEBUG_CODE_END ();
DEBUG_CODE_BEGIN();
// Find the memory attribute for the Translation Table
if ((UINTN)TranslationTable >= MemoryTable->PhysicalBase &&
(UINTN)TranslationTable + EFI_PAGE_SIZE <=
MemoryTable->PhysicalBase + MemoryTable->Length) {
TranslationTableAttribute = MemoryTable->Attributes;
}
DEBUG_CODE_END();
Status = FillTranslationTable (TranslationTable, MemoryTable);
if (EFI_ERROR (Status)) {
Status = FillTranslationTable(TranslationTable, MemoryTable);
if (EFI_ERROR(Status)) {
goto FREE_TRANSLATION_TABLE;
}
MemoryTable++;
idx++;
}
ASSERT (TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK ||
TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_BACK);
ASSERT(
TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK ||
TranslationTableAttribute ==
ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_BACK);
ArmSetMAIR (MAIR_ATTR(TT_ATTR_INDX_DEVICE_MEMORY, MAIR_ATTR_DEVICE_MEMORY) | // mapped to EFI_MEMORY_UC
MAIR_ATTR(TT_ATTR_INDX_MEMORY_NON_CACHEABLE, MAIR_ATTR_NORMAL_MEMORY_NON_CACHEABLE) | // mapped to EFI_MEMORY_WC
MAIR_ATTR(TT_ATTR_INDX_MEMORY_WRITE_THROUGH, MAIR_ATTR_NORMAL_MEMORY_WRITE_THROUGH) | // mapped to EFI_MEMORY_WT
MAIR_ATTR(TT_ATTR_INDX_MEMORY_WRITE_BACK, MAIR_ATTR_NORMAL_MEMORY_WRITE_BACK)); // mapped to EFI_MEMORY_WB
ArmSetMAIR(
MAIR_ATTR(
TT_ATTR_INDX_DEVICE_MEMORY,
MAIR_ATTR_DEVICE_MEMORY) | // mapped to EFI_MEMORY_UC
MAIR_ATTR(
TT_ATTR_INDX_MEMORY_NON_CACHEABLE,
MAIR_ATTR_NORMAL_MEMORY_NON_CACHEABLE) | // mapped to EFI_MEMORY_WC
MAIR_ATTR(
TT_ATTR_INDX_MEMORY_WRITE_THROUGH,
MAIR_ATTR_NORMAL_MEMORY_WRITE_THROUGH) | // mapped to EFI_MEMORY_WT
MAIR_ATTR(
TT_ATTR_INDX_MEMORY_WRITE_BACK,
MAIR_ATTR_NORMAL_MEMORY_WRITE_BACK)); // mapped to EFI_MEMORY_WB
ArmDisableAlignmentCheck ();
ArmEnableStackAlignmentCheck ();
ArmEnableInstructionCache ();
ArmEnableDataCache ();
ArmDisableAlignmentCheck();
ArmEnableStackAlignmentCheck();
ArmEnableInstructionCache();
ArmEnableDataCache();
ArmEnableMmu ();
ArmEnableMmu();
return EFI_SUCCESS;
FREE_TRANSLATION_TABLE:
FreePages (TranslationTable, 1);
FreePages(TranslationTable, 1);
return Status;
}
RETURN_STATUS
EFIAPI
ArmMmuBaseLibConstructor (
VOID
)
ArmMmuBaseLibConstructor(VOID)
{
extern UINT32 ArmReplaceLiveTranslationEntrySize;
@ -765,8 +772,8 @@ ArmMmuBaseLibConstructor (
// The ArmReplaceLiveTranslationEntry () helper function may be invoked
// with the MMU off so we have to ensure that it gets cleaned to the PoC
//
WriteBackDataCacheRange (ArmReplaceLiveTranslationEntry,
ArmReplaceLiveTranslationEntrySize);
WriteBackDataCacheRange(
ArmReplaceLiveTranslationEntry, ArmReplaceLiveTranslationEntrySize);
return RETURN_SUCCESS;
}

View File

@ -15,20 +15,18 @@
EFI_STATUS
EFIAPI
ArmMmuPeiLibConstructor (
IN EFI_PEI_FILE_HANDLE FileHandle,
IN CONST EFI_PEI_SERVICES **PeiServices
)
ArmMmuPeiLibConstructor(
IN EFI_PEI_FILE_HANDLE FileHandle, IN CONST EFI_PEI_SERVICES **PeiServices)
{
extern UINT32 ArmReplaceLiveTranslationEntrySize;
extern UINT32 ArmReplaceLiveTranslationEntrySize;
EFI_FV_FILE_INFO FileInfo;
EFI_STATUS Status;
EFI_FV_FILE_INFO FileInfo;
EFI_STATUS Status;
ASSERT (FileHandle != NULL);
ASSERT(FileHandle != NULL);
Status = (*PeiServices)->FfsGetFileInfo (FileHandle, &FileInfo);
ASSERT_EFI_ERROR (Status);
Status = (*PeiServices)->FfsGetFileInfo(FileHandle, &FileInfo);
ASSERT_EFI_ERROR(Status);
//
// Some platforms do not cope very well with cache maintenance being
@ -39,16 +37,20 @@ ArmMmuPeiLibConstructor (
//
if ((UINTN)FileInfo.Buffer <= (UINTN)ArmReplaceLiveTranslationEntry &&
((UINTN)FileInfo.Buffer + FileInfo.BufferSize >=
(UINTN)ArmReplaceLiveTranslationEntry + ArmReplaceLiveTranslationEntrySize)) {
DEBUG ((EFI_D_INFO, "ArmMmuLib: skipping cache maintenance on XIP PEIM\n"));
} else {
DEBUG ((EFI_D_INFO, "ArmMmuLib: performing cache maintenance on shadowed PEIM\n"));
(UINTN)ArmReplaceLiveTranslationEntry +
ArmReplaceLiveTranslationEntrySize)) {
DEBUG((EFI_D_INFO, "ArmMmuLib: skipping cache maintenance on XIP PEIM\n"));
}
else {
DEBUG(
(EFI_D_INFO,
"ArmMmuLib: performing cache maintenance on shadowed PEIM\n"));
//
// The ArmReplaceLiveTranslationEntry () helper function may be invoked
// with the MMU off so we have to ensure that it gets cleaned to the PoC
//
WriteBackDataCacheRange (ArmReplaceLiveTranslationEntry,
ArmReplaceLiveTranslationEntrySize);
WriteBackDataCacheRange(
ArmReplaceLiveTranslationEntry, ArmReplaceLiveTranslationEntrySize);
}
return RETURN_SUCCESS;

File diff suppressed because it is too large Load Diff

View File

@ -24,7 +24,7 @@
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
*/
#include "AutoGen.h"
#include <Library/BootSlotLib/BlockIoUtils.h>
@ -42,35 +42,34 @@
BLK_IO_SEL_MATCH_ROOT_DEVICE)
/* Returns 0 if the volume label matches otherwise non zero */
STATIC UINTN
CompareVolumeLabel (IN EFI_SIMPLE_FILE_SYSTEM_PROTOCOL* Fs,
IN CHAR8* ReqVolumeName)
STATIC UINTN CompareVolumeLabel(
IN EFI_SIMPLE_FILE_SYSTEM_PROTOCOL *Fs, IN CHAR8 *ReqVolumeName)
{
INT32 CmpResult;
UINT32 j;
UINT16 VolumeLabel[VOLUME_LABEL_SIZE];
EFI_FILE_PROTOCOL *FsVolume = NULL;
EFI_STATUS Status;
UINTN Size;
EFI_FILE_SYSTEM_INFO *FsInfo;
INT32 CmpResult;
UINT32 j;
UINT16 VolumeLabel[VOLUME_LABEL_SIZE];
EFI_FILE_PROTOCOL * FsVolume = NULL;
EFI_STATUS Status;
UINTN Size;
EFI_FILE_SYSTEM_INFO *FsInfo;
// Get information about the volume
Status = Fs->OpenVolume (Fs, &FsVolume);
Status = Fs->OpenVolume(Fs, &FsVolume);
if (Status != EFI_SUCCESS) {
return 1;
}
/* Get the Volume name */
Size = 0;
Size = 0;
FsInfo = NULL;
Status = FsVolume->GetInfo (FsVolume, &gEfiFileSystemInfoGuid, &Size, FsInfo);
Status = FsVolume->GetInfo(FsVolume, &gEfiFileSystemInfoGuid, &Size, FsInfo);
if (Status == EFI_BUFFER_TOO_SMALL) {
FsInfo = AllocateZeroPool (Size);
Status = FsVolume->GetInfo (FsVolume,
&gEfiFileSystemInfoGuid, &Size, FsInfo);
FsInfo = AllocateZeroPool(Size);
Status =
FsVolume->GetInfo(FsVolume, &gEfiFileSystemInfoGuid, &Size, FsInfo);
if (Status != EFI_SUCCESS) {
FreePool (FsInfo);
FreePool(FsInfo);
return 1;
}
}
@ -83,8 +82,7 @@ CompareVolumeLabel (IN EFI_SIMPLE_FILE_SYSTEM_PROTOCOL* Fs,
for (j = 0; (j < VOLUME_LABEL_SIZE - 1) && ReqVolumeName[j]; ++j) {
VolumeLabel[j] = ReqVolumeName[j];
if ((VolumeLabel[j] >= 'a') &&
(VolumeLabel[j] <= 'z')) {
if ((VolumeLabel[j] >= 'a') && (VolumeLabel[j] <= 'z')) {
VolumeLabel[j] -= ('a' - 'A');
}
}
@ -95,27 +93,26 @@ CompareVolumeLabel (IN EFI_SIMPLE_FILE_SYSTEM_PROTOCOL* Fs,
/* Change any lower chars in volume name to upper
* (ideally this is not needed) */
for (j = 0; (j < VOLUME_LABEL_SIZE - 1) && FsInfo->VolumeLabel[j]; ++j) {
if ((FsInfo->VolumeLabel[j] >= 'a') &&
(FsInfo->VolumeLabel[j] <= 'z')) {
if ((FsInfo->VolumeLabel[j] >= 'a') && (FsInfo->VolumeLabel[j] <= 'z')) {
FsInfo->VolumeLabel[j] -= ('a' - 'A');
}
}
CmpResult = StrnCmp (FsInfo->VolumeLabel, VolumeLabel, VOLUME_LABEL_SIZE);
CmpResult = StrnCmp(FsInfo->VolumeLabel, VolumeLabel, VOLUME_LABEL_SIZE);
FreePool (FsInfo);
FsVolume->Close (FsVolume);
FreePool(FsInfo);
FsVolume->Close(FsVolume);
return CmpResult;
}
EFI_STATUS
EFIAPI
GetPartitionEntry (IN EFI_HANDLE Handle,
OUT EFI_PARTITION_ENTRY **PartEntry)
GetPartitionEntry(IN EFI_HANDLE Handle, OUT EFI_PARTITION_ENTRY **PartEntry)
{
EFI_PARTITION_INFO_PROTOCOL *PartInfo;
EFI_STATUS Status = gBS->HandleProtocol (Handle, &gEfiPartitionInfoProtocolGuid, (VOID **)&PartInfo);
EFI_STATUS Status = gBS->HandleProtocol(
Handle, &gEfiPartitionInfoProtocolGuid, (VOID **)&PartInfo);
if (!EFI_ERROR(Status)) {
*PartEntry = &PartInfo->Info.Gpt;
}
@ -139,24 +136,23 @@ On output, the number of handle structures returned.
*/
EFI_STATUS
EFIAPI
GetBlkIOHandles (IN UINT32 SelectionAttrib,
IN PartiSelectFilter *FilterData,
OUT HandleInfo *HandleInfoPtr,
IN OUT UINT32* MaxBlkIopCnt)
GetBlkIOHandles(
IN UINT32 SelectionAttrib, IN PartiSelectFilter *FilterData,
OUT HandleInfo *HandleInfoPtr, IN OUT UINT32 *MaxBlkIopCnt)
{
EFI_BLOCK_IO_PROTOCOL *BlkIo;
EFI_HANDLE *BlkIoHandles;
UINTN BlkIoHandleCount;
UINTN i;
UINTN DevicePathDepth;
HARDDRIVE_DEVICE_PATH *Partition, *PartitionOut;
EFI_STATUS Status;
EFI_DEVICE_PATH_PROTOCOL *DevPathInst;
EFI_DEVICE_PATH_PROTOCOL *TempDevicePath;
VENDOR_DEVICE_PATH *RootDevicePath;
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL *Fs;
UINT32 BlkIoCnt = 0;
EFI_PARTITION_ENTRY *PartEntry;
EFI_BLOCK_IO_PROTOCOL * BlkIo;
EFI_HANDLE * BlkIoHandles;
UINTN BlkIoHandleCount;
UINTN i;
UINTN DevicePathDepth;
HARDDRIVE_DEVICE_PATH * Partition, *PartitionOut;
EFI_STATUS Status;
EFI_DEVICE_PATH_PROTOCOL * DevPathInst;
EFI_DEVICE_PATH_PROTOCOL * TempDevicePath;
VENDOR_DEVICE_PATH * RootDevicePath;
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL *Fs;
UINT32 BlkIoCnt = 0;
EFI_PARTITION_ENTRY * PartEntry;
if ((MaxBlkIopCnt == NULL) || (HandleInfoPtr == NULL))
return EFI_INVALID_PARAMETER;
@ -176,32 +172,33 @@ GetBlkIOHandles (IN UINT32 SelectionAttrib,
* than BlkIo */
if (SelectionAttrib & (BLK_IO_SEL_SELECT_MOUNTED_FILESYSTEM |
BLK_IO_SEL_SELECT_BY_VOLUME_NAME)) {
Status =
gBS->LocateHandleBuffer (ByProtocol, &gEfiSimpleFileSystemProtocolGuid,
NULL, &BlkIoHandleCount, &BlkIoHandles);
} else {
Status = gBS->LocateHandleBuffer (ByProtocol, &gEfiBlockIoProtocolGuid,
NULL, &BlkIoHandleCount, &BlkIoHandles);
Status = gBS->LocateHandleBuffer(
ByProtocol, &gEfiSimpleFileSystemProtocolGuid, NULL, &BlkIoHandleCount,
&BlkIoHandles);
}
else {
Status = gBS->LocateHandleBuffer(
ByProtocol, &gEfiBlockIoProtocolGuid, NULL, &BlkIoHandleCount,
&BlkIoHandles);
}
if (Status != EFI_SUCCESS) {
DEBUG (
(EFI_D_ERROR, "Unable to get Filesystem Handle buffer %r\n", Status));
DEBUG((EFI_D_ERROR, "Unable to get Filesystem Handle buffer %r\n", Status));
return Status;
}
/* Loop through to search for the ones we are interested in. */
for (i = 0; i < BlkIoHandleCount; i++) {
Status = gBS->HandleProtocol (BlkIoHandles[i], &gEfiBlockIoProtocolGuid,
(VOID **)&BlkIo);
Status = gBS->HandleProtocol(
BlkIoHandles[i], &gEfiBlockIoProtocolGuid, (VOID **)&BlkIo);
/* Fv volumes will not support Blk I/O protocol */
if (Status == EFI_UNSUPPORTED) {
continue;
}
if (Status != EFI_SUCCESS) {
DEBUG ((EFI_D_ERROR, "Unable to get Filesystem Handle %r\n", Status));
DEBUG((EFI_D_ERROR, "Unable to get Filesystem Handle %r\n", Status));
return Status;
}
@ -209,7 +206,8 @@ GetBlkIOHandles (IN UINT32 SelectionAttrib,
if (BlkIo->Media->RemovableMedia) {
if ((SelectionAttrib & BLK_IO_SEL_MEDIA_TYPE_REMOVABLE) == 0)
continue;
} else {
}
else {
if ((SelectionAttrib & BLK_IO_SEL_MEDIA_TYPE_NON_REMOVABLE) == 0)
continue;
}
@ -219,12 +217,12 @@ GetBlkIOHandles (IN UINT32 SelectionAttrib,
/* Check if partition related criteria satisfies */
if ((SelectionAttrib & FILTERS_NEEDING_DEVICEPATH) != 0) {
Status = gBS->HandleProtocol (
Status = gBS->HandleProtocol(
BlkIoHandles[i], &gEfiDevicePathProtocolGuid, (VOID **)&DevPathInst);
/* If we didn't get the DevicePath Protocol then this handle
* cannot be used */
if (EFI_ERROR (Status))
if (EFI_ERROR(Status))
continue;
DevicePathDepth = 0;
@ -232,7 +230,7 @@ GetBlkIOHandles (IN UINT32 SelectionAttrib,
/* Get the device path */
TempDevicePath = DevPathInst;
RootDevicePath = (VENDOR_DEVICE_PATH *)DevPathInst;
Partition = (HARDDRIVE_DEVICE_PATH *)TempDevicePath;
Partition = (HARDDRIVE_DEVICE_PATH *)TempDevicePath;
if ((SelectionAttrib & (BLK_IO_SEL_SELECT_ROOT_DEVICE_ONLY |
BLK_IO_SEL_MATCH_ROOT_DEVICE)) != 0) {
@ -245,18 +243,18 @@ GetBlkIOHandles (IN UINT32 SelectionAttrib,
RootDevicePath->Header.SubType != HW_VENDOR_DP ||
(RootDevicePath->Header.Length[0] |
(RootDevicePath->Header.Length[1] << 8)) !=
sizeof (VENDOR_DEVICE_PATH) ||
sizeof(VENDOR_DEVICE_PATH) ||
((FilterData->RootDeviceType != NULL) &&
(CompareGuid (FilterData->RootDeviceType,
&RootDevicePath->Guid) == FALSE)))
(CompareGuid(FilterData->RootDeviceType, &RootDevicePath->Guid) ==
FALSE)))
continue;
}
/* Locate the last Device Path Node */
while (!IsDevicePathEnd (TempDevicePath)) {
while (!IsDevicePathEnd(TempDevicePath)) {
DevicePathDepth++;
Partition = (HARDDRIVE_DEVICE_PATH *)TempDevicePath;
TempDevicePath = NextDevicePathNode (TempDevicePath);
Partition = (HARDDRIVE_DEVICE_PATH *)TempDevicePath;
TempDevicePath = NextDevicePathNode(TempDevicePath);
}
/* If we need the handle for root device only and if this is representing
@ -270,7 +268,7 @@ GetBlkIOHandles (IN UINT32 SelectionAttrib,
if (Partition->Header.Type == MEDIA_DEVICE_PATH &&
Partition->Header.SubType == MEDIA_HARDDRIVE_DP &&
(Partition->Header.Length[0] | (Partition->Header.Length[1] << 8)) ==
sizeof (*Partition)) {
sizeof(*Partition)) {
PartitionOut = Partition;
if ((SelectionAttrib & BLK_IO_SEL_PARTITIONED_GPT) == 0)
@ -285,45 +283,44 @@ GetBlkIOHandles (IN UINT32 SelectionAttrib,
if ((SelectionAttrib & BLK_IO_SEL_MATCH_PARTITION_TYPE_GUID) != 0) {
VOID *Interface;
if (!FilterData ||
FilterData->PartitionType == NULL) {
if (!FilterData || FilterData->PartitionType == NULL) {
return EFI_INVALID_PARAMETER;
}
Status = gBS->HandleProtocol (BlkIoHandles[i],
FilterData->PartitionType,
(VOID**)&Interface);
if (EFI_ERROR (Status)) {
Status = GetPartitionEntry(BlkIoHandles[i], &PartEntry);
if (EFI_ERROR (Status)) {
continue;
}
if (CompareGuid (&PartEntry->PartitionTypeGUID, FilterData->PartitionType) == FALSE) {
continue;
}
Status = gBS->HandleProtocol(
BlkIoHandles[i], FilterData->PartitionType, (VOID **)&Interface);
if (EFI_ERROR(Status)) {
Status = GetPartitionEntry(BlkIoHandles[i], &PartEntry);
if (EFI_ERROR(Status)) {
continue;
}
if (CompareGuid(
&PartEntry->PartitionTypeGUID, FilterData->PartitionType) ==
FALSE) {
continue;
}
}
}
}
/* If we wanted a particular partition and didn't get the HDD DP,
then this handle is probably not the interested ones */
else if ((SelectionAttrib & BLK_IO_SEL_MATCH_PARTITION_TYPE_GUID) != 0)
continue;
continue;
}
/* Check if the Filesystem related criteria satisfies */
if ((SelectionAttrib & BLK_IO_SEL_SELECT_MOUNTED_FILESYSTEM) != 0) {
Status = gBS->HandleProtocol (BlkIoHandles[i],
&gEfiSimpleFileSystemProtocolGuid, (VOID **)&Fs);
if (EFI_ERROR (Status)) {
Status = gBS->HandleProtocol(
BlkIoHandles[i], &gEfiSimpleFileSystemProtocolGuid, (VOID **)&Fs);
if (EFI_ERROR(Status)) {
continue;
}
if ((SelectionAttrib & BLK_IO_SEL_SELECT_BY_VOLUME_NAME) != 0) {
if (!FilterData ||
FilterData->VolumeName == NULL) {
if (!FilterData || FilterData->VolumeName == NULL) {
return EFI_INVALID_PARAMETER;
}
if (CompareVolumeLabel (Fs, FilterData->VolumeName) != 0) {
if (CompareVolumeLabel(Fs, FilterData->VolumeName) != 0) {
continue;
}
}
@ -334,15 +331,16 @@ GetBlkIOHandles (IN UINT32 SelectionAttrib,
Status = GetPartitionEntry(BlkIoHandles[i], &PartEntry);
if (Status != EFI_SUCCESS)
continue;
if (StrnCmp (PartEntry->PartitionName, FilterData->PartitionLabel,
MAX (StrLen (PartEntry->PartitionName),
StrLen (FilterData->PartitionLabel))))
if (StrnCmp(
PartEntry->PartitionName, FilterData->PartitionLabel,
MAX(StrLen(PartEntry->PartitionName),
StrLen(FilterData->PartitionLabel))))
continue;
}
/* We came here means, this handle satisfies all the conditions needed,
* Add it into the list */
HandleInfoPtr[BlkIoCnt].Handle = BlkIoHandles[i];
HandleInfoPtr[BlkIoCnt].BlkIo = BlkIo;
HandleInfoPtr[BlkIoCnt].Handle = BlkIoHandles[i];
HandleInfoPtr[BlkIoCnt].BlkIo = BlkIo;
HandleInfoPtr[BlkIoCnt].PartitionInfo = PartitionOut;
BlkIoCnt++;
if (BlkIoCnt >= *MaxBlkIopCnt)
@ -353,7 +351,7 @@ GetBlkIOHandles (IN UINT32 SelectionAttrib,
/* Free the handle buffer */
if (BlkIoHandles != NULL) {
FreePool (BlkIoHandles);
FreePool(BlkIoHandles);
BlkIoHandles = NULL;
}

View File

@ -19,14 +19,17 @@
#include <Library/BootSlotLib/EFIUtils.h>
#include <Library/UefiLib.h>
void WaitAnyKey(EFI_SYSTEM_TABLE *mSystemTable) {
UINTN index = 0;
EFI_INPUT_KEY Key;
mSystemTable->BootServices->WaitForEvent(1, &mSystemTable->ConIn->WaitForKey, &index);
mSystemTable->ConIn->ReadKeyStroke(mSystemTable->ConIn, &Key);
void WaitAnyKey(EFI_SYSTEM_TABLE *mSystemTable)
{
UINTN index = 0;
EFI_INPUT_KEY Key;
mSystemTable->BootServices->WaitForEvent(
1, &mSystemTable->ConIn->WaitForKey, &index);
mSystemTable->ConIn->ReadKeyStroke(mSystemTable->ConIn, &Key);
}
void PrintAndWaitAnyKey(EFI_SYSTEM_TABLE *mSystemTable, CHAR16 *Message) {
Print(Message);
WaitAnyKey(mSystemTable);
void PrintAndWaitAnyKey(EFI_SYSTEM_TABLE *mSystemTable, CHAR16 *Message)
{
Print(Message);
WaitAnyKey(mSystemTable);
}

File diff suppressed because it is too large Load Diff

View File

@ -1,4 +1,5 @@
/* Copyright (c) 2015-2018, 2020-2021, The Linux Foundation. All rights reserved.
/* Copyright (c) 2015-2018, 2020-2021, The Linux Foundation. All rights
* reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
@ -24,15 +25,17 @@
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
*/
#include "AutoGen.h"
#include <Library/BootSlotLib/StorageUtils.h>
#include <Library/BootSlotLib/BlockIoUtils.h>
#include <Library/BootSlotLib/StorageUtils.h>
STATIC CONST CHAR8 *DeviceType[] = {
[EMMC] = "EMMC", [UFS] = "UFS", [UNKNOWN] = "Unknown",
[EMMC] = "EMMC",
[UFS] = "UFS",
[UNKNOWN] = "Unknown",
};
/**
@ -48,16 +51,16 @@ STATIC CONST CHAR8 *DeviceType[] = {
**/
STATIC EFI_STATUS
GetDeviceHandleInfo (VOID *HndlInfo, UINT32 MaxHandles, MemCardType Type)
GetDeviceHandleInfo(VOID *HndlInfo, UINT32 MaxHandles, MemCardType Type)
{
EFI_STATUS Status = EFI_INVALID_PARAMETER;
UINT32 Attribs = 0;
EFI_STATUS Status = EFI_INVALID_PARAMETER;
UINT32 Attribs = 0;
PartiSelectFilter HandleFilter;
HandleInfo *HandleInfoList = HndlInfo;
HandleInfo * HandleInfoList = HndlInfo;
Attribs |= BLK_IO_SEL_MATCH_ROOT_DEVICE;
HandleFilter.PartitionType = NULL;
HandleFilter.VolumeName = NULL;
HandleFilter.VolumeName = NULL;
switch (Type) {
case UFS:
@ -67,15 +70,13 @@ GetDeviceHandleInfo (VOID *HndlInfo, UINT32 MaxHandles, MemCardType Type)
HandleFilter.RootDeviceType = &gEfiEmmcUserPartitionGuid;
break;
case UNKNOWN:
DEBUG ((EFI_D_ERROR, "Device type unknown\n"));
DEBUG((EFI_D_ERROR, "Device type unknown\n"));
return Status;
}
Status =
GetBlkIOHandles (Attribs, &HandleFilter, HandleInfoList, &MaxHandles);
if (EFI_ERROR (Status) ||
MaxHandles == 0) {
DEBUG ((EFI_D_ERROR, "Get BlkIohandles failed\n"));
Status = GetBlkIOHandles(Attribs, &HandleFilter, HandleInfoList, &MaxHandles);
if (EFI_ERROR(Status) || MaxHandles == 0) {
DEBUG((EFI_D_ERROR, "Get BlkIohandles failed\n"));
return Status;
}
return Status;
@ -85,16 +86,15 @@ GetDeviceHandleInfo (VOID *HndlInfo, UINT32 MaxHandles, MemCardType Type)
Return a device type
@retval Device type : UNKNOWN | UFS | EMMC | NAND
**/
STATIC UINT32
GetCompatibleRootDeviceType (VOID)
STATIC UINT32 GetCompatibleRootDeviceType(VOID)
{
EFI_STATUS Status = EFI_INVALID_PARAMETER;
HandleInfo HandleInfoList[HANDLE_MAX_INFO_LIST];
UINT32 MaxHandles = ARRAY_SIZE (HandleInfoList);
UINT32 Index;
UINT32 MaxHandles = ARRAY_SIZE(HandleInfoList);
UINT32 Index;
for (Index = 0; Index < UNKNOWN; Index++) {
Status = GetDeviceHandleInfo (HandleInfoList, MaxHandles, Index);
Status = GetDeviceHandleInfo(HandleInfoList, MaxHandles, Index);
if (Status == EFI_SUCCESS) {
return Index;
}
@ -108,31 +108,33 @@ GetCompatibleRootDeviceType (VOID)
@retval Device type : UNKNOWN | UFS | EMMC, default is UNKNOWN
**/
MemCardType
CheckRootDeviceType (VOID)
MemCardType CheckRootDeviceType(VOID)
{
EFI_STATUS Status = EFI_INVALID_PARAMETER;
STATIC MemCardType Type = UNKNOWN;
MEM_CARD_INFO CardInfoData;
EFI_STATUS Status = EFI_INVALID_PARAMETER;
STATIC MemCardType Type = UNKNOWN;
MEM_CARD_INFO CardInfoData;
EFI_MEM_CARDINFO_PROTOCOL *CardInfo;
if (Type == UNKNOWN) {
Status = gBS->LocateProtocol (&gEfiMemCardInfoProtocolGuid, NULL,
(VOID **)&CardInfo);
if (!EFI_ERROR (Status)) {
Status = gBS->LocateProtocol(
&gEfiMemCardInfoProtocolGuid, NULL, (VOID **)&CardInfo);
if (!EFI_ERROR(Status)) {
Status = CardInfo->GetCardInfo (CardInfo, &CardInfoData);
Status = CardInfo->GetCardInfo(CardInfo, &CardInfoData);
if (!EFI_ERROR (Status)) {
if (!EFI_ERROR(Status)) {
if (!AsciiStrnCmp ((CHAR8 *)CardInfoData.card_type, "UFS",
AsciiStrLen ("UFS"))) {
if (!AsciiStrnCmp(
(CHAR8 *)CardInfoData.card_type, "UFS", AsciiStrLen("UFS"))) {
Type = UFS;
} else if (!AsciiStrnCmp ((CHAR8 *)CardInfoData.card_type, "EMMC",
AsciiStrLen ("EMMC"))) {
}
else if (!AsciiStrnCmp(
(CHAR8 *)CardInfoData.card_type, "EMMC",
AsciiStrLen("EMMC"))) {
Type = EMMC;
} else {
Type = GetCompatibleRootDeviceType ();
}
else {
Type = GetCompatibleRootDeviceType();
}
}
}
@ -145,57 +147,57 @@ CheckRootDeviceType (VOID)
@param[out] StrDeviceType : Pointer to array of device type string.
@param[in] Len : The size of the device type string
**/
VOID
GetRootDeviceType (CHAR8 *StrDeviceType, UINT32 Len)
VOID GetRootDeviceType(CHAR8 *StrDeviceType, UINT32 Len)
{
UINT32 Type;
Type = CheckRootDeviceType ();
AsciiSPrint (StrDeviceType, Len, "%a", DeviceType[Type]);
Type = CheckRootDeviceType();
AsciiSPrint(StrDeviceType, Len, "%a", DeviceType[Type]);
}
EFI_STATUS
UfsGetSetBootLun (UINT32 *UfsBootlun, BOOLEAN IsGet)
UfsGetSetBootLun(UINT32 *UfsBootlun, BOOLEAN IsGet)
{
EFI_STATUS Status = EFI_INVALID_PARAMETER;
EFI_STATUS Status = EFI_INVALID_PARAMETER;
EFI_MEM_CARDINFO_PROTOCOL *CardInfo;
HandleInfo HandleInfoList[MAX_HANDLE_INFO_LIST];
UINT32 Attribs = 0;
UINT32 MaxHandles;
PartiSelectFilter HandleFilter;
HandleInfo HandleInfoList[MAX_HANDLE_INFO_LIST];
UINT32 Attribs = 0;
UINT32 MaxHandles;
PartiSelectFilter HandleFilter;
Attribs |= BLK_IO_SEL_MATCH_ROOT_DEVICE;
MaxHandles = ARRAY_SIZE (HandleInfoList);
HandleFilter.PartitionType = NULL;
HandleFilter.VolumeName = NULL;
MaxHandles = ARRAY_SIZE(HandleInfoList);
HandleFilter.PartitionType = NULL;
HandleFilter.VolumeName = NULL;
HandleFilter.RootDeviceType = &gEfiUfsLU0Guid;
Status =
GetBlkIOHandles (Attribs, &HandleFilter, HandleInfoList, &MaxHandles);
if (EFI_ERROR (Status))
Status = GetBlkIOHandles(Attribs, &HandleFilter, HandleInfoList, &MaxHandles);
if (EFI_ERROR(Status))
return EFI_NOT_FOUND;
Status =
gBS->HandleProtocol (HandleInfoList[0].Handle,
&gEfiMemCardInfoProtocolGuid, (VOID **)&CardInfo);
Status = gBS->HandleProtocol(
HandleInfoList[0].Handle, &gEfiMemCardInfoProtocolGuid,
(VOID **)&CardInfo);
if (Status != EFI_SUCCESS) {
DEBUG ((EFI_D_ERROR, "Error locating MemCardInfoProtocol:%x\n", Status));
DEBUG((EFI_D_ERROR, "Error locating MemCardInfoProtocol:%x\n", Status));
return Status;
}
if (CardInfo->Revision < EFI_MEM_CARD_INFO_PROTOCOL_REVISION) {
DEBUG ((EFI_D_ERROR, "This API not supported in Revision =%u\n",
CardInfo->Revision));
DEBUG(
(EFI_D_ERROR, "This API not supported in Revision =%u\n",
CardInfo->Revision));
return EFI_NOT_FOUND;
}
if (IsGet == TRUE) {
if (CardInfo->GetBootLU (CardInfo, UfsBootlun) == EFI_SUCCESS)
DEBUG ((EFI_D_VERBOSE, "Get BootLun =%u\n", *UfsBootlun));
} else {
if (CardInfo->SetBootLU (CardInfo, *UfsBootlun) == EFI_SUCCESS)
DEBUG ((EFI_D_VERBOSE, "SetBootLun =%u\n", *UfsBootlun));
if (CardInfo->GetBootLU(CardInfo, UfsBootlun) == EFI_SUCCESS)
DEBUG((EFI_D_VERBOSE, "Get BootLun =%u\n", *UfsBootlun));
}
else {
if (CardInfo->SetBootLU(CardInfo, *UfsBootlun) == EFI_SUCCESS)
DEBUG((EFI_D_VERBOSE, "SetBootLun =%u\n", *UfsBootlun));
}
return Status;
}

View File

@ -5,37 +5,27 @@
#include <Library/HobLib.h>
#include <Library/SerialPortLib.h>
#include <Resources/font5x12.h>
#include <Resources/FbColor.h>
#include <Resources/font5x12.h>
#include "FrameBufferSerialPortLib.h"
FBCON_POSITION m_Position;
FBCON_POSITION m_MaxPosition;
FBCON_COLOR m_Color;
BOOLEAN m_Initialized = FALSE;
FBCON_COLOR m_Color;
BOOLEAN m_Initialized = FALSE;
UINTN gWidth = FixedPcdGet32(PcdMipiFrameBufferWidth);
// Reserve half screen for output
UINTN gHeight = FixedPcdGet32(PcdMipiFrameBufferHeight);
UINTN gBpp = FixedPcdGet32(PcdMipiFrameBufferPixelBpp);
UINTN gBpp = FixedPcdGet32(PcdMipiFrameBufferPixelBpp);
// Module-used internal routine
void FbConPutCharWithFactor
(
char c,
int type,
unsigned scale_factor
);
void FbConPutCharWithFactor(char c, int type, unsigned scale_factor);
void FbConDrawglyph
(
char *pixels,
unsigned stride,
unsigned bpp,
unsigned *glyph,
unsigned scale_factor
);
void FbConDrawglyph(
char *pixels, unsigned stride, unsigned bpp, unsigned *glyph,
unsigned scale_factor);
void FbConReset(void);
void FbConScrollUp(void);
@ -43,422 +33,331 @@ void FbConFlush(void);
RETURN_STATUS
EFIAPI
SerialPortInitialize
(
VOID
)
SerialPortInitialize(VOID)
{
UINTN InterruptState = 0;
UINTN InterruptState = 0;
// Prevent dup initialization
if (m_Initialized) return RETURN_SUCCESS;
// Prevent dup initialization
if (m_Initialized)
return RETURN_SUCCESS;
// Interrupt Disable
InterruptState = ArmGetInterruptState();
ArmDisableInterrupts();
// Interrupt Disable
InterruptState = ArmGetInterruptState();
ArmDisableInterrupts();
// Reset console
FbConReset();
// Reset console
FbConReset();
// Set flag
m_Initialized = TRUE;
// Set flag
m_Initialized = TRUE;
if (InterruptState) ArmEnableInterrupts();
return RETURN_SUCCESS;
if (InterruptState)
ArmEnableInterrupts();
return RETURN_SUCCESS;
}
void ResetFb(void)
{
// Clear current screen.
char* Pixels = (void*)FixedPcdGet32(PcdMipiFrameBufferAddress);
UINTN BgColor = FB_BGRA8888_BLACK;
// Clear current screen.
char *Pixels = (void *)FixedPcdGet32(PcdMipiFrameBufferAddress);
UINTN BgColor = FB_BGRA8888_BLACK;
// Set to black color.
for (UINTN i = 0; i < gWidth; i++)
{
for (UINTN j = 0; j < gHeight; j++)
{
BgColor = FB_BGRA8888_BLACK;
// Set pixel bit
for (UINTN p = 0; p < (gBpp / 8); p++)
{
*Pixels = (unsigned char)BgColor;
BgColor = BgColor >> 8;
Pixels++;
}
}
}
// Set to black color.
for (UINTN i = 0; i < gWidth; i++) {
for (UINTN j = 0; j < gHeight; j++) {
BgColor = FB_BGRA8888_BLACK;
// Set pixel bit
for (UINTN p = 0; p < (gBpp / 8); p++) {
*Pixels = (unsigned char)BgColor;
BgColor = BgColor >> 8;
Pixels++;
}
}
}
}
void FbConReset(void)
{
// Reset position.
m_Position.x = 0;
m_Position.y = 0;
// Reset position.
m_Position.x = 0;
m_Position.y = 0;
// Calc max position.
m_MaxPosition.x = gWidth / (FONT_WIDTH + 1);
m_MaxPosition.y = (gHeight - 1) / FONT_HEIGHT;
// Calc max position.
m_MaxPosition.x = gWidth / (FONT_WIDTH + 1);
m_MaxPosition.y = (gHeight - 1) / FONT_HEIGHT;
// Reset color.
m_Color.Foreground = FB_BGRA8888_WHITE;
m_Color.Background = FB_BGRA8888_BLACK;
// Reset color.
m_Color.Foreground = FB_BGRA8888_WHITE;
m_Color.Background = FB_BGRA8888_BLACK;
}
void FbConPutCharWithFactor
(
char c,
int type,
unsigned scale_factor
)
void FbConPutCharWithFactor(char c, int type, unsigned scale_factor)
{
char* Pixels;
char *Pixels;
if (!m_Initialized) return;
if (!m_Initialized)
return;
paint:
if ((unsigned char)c > 127) return;
if ((unsigned char)c > 127)
return;
if ((unsigned char)c < 32)
{
if (c == '\n')
{
goto newline;
}
else if (c == '\r')
{
m_Position.x = 0;
return;
}
else
{
return;
}
}
if ((unsigned char)c < 32) {
if (c == '\n') {
goto newline;
}
else if (c == '\r') {
m_Position.x = 0;
return;
}
else {
return;
}
}
// Save some space
if (m_Position.x == 0 && (unsigned char)c == ' ' &&
type != FBCON_SUBTITLE_MSG &&
type != FBCON_TITLE_MSG)
return;
// Save some space
if (m_Position.x == 0 && (unsigned char)c == ' ' &&
type != FBCON_SUBTITLE_MSG && type != FBCON_TITLE_MSG)
return;
BOOLEAN intstate = ArmGetInterruptState();
ArmDisableInterrupts();
BOOLEAN intstate = ArmGetInterruptState();
ArmDisableInterrupts();
Pixels = (void*)FixedPcdGet32(PcdMipiFrameBufferAddress);
Pixels += m_Position.y * ((gBpp / 8) * FONT_HEIGHT * gWidth);
Pixels += m_Position.x * scale_factor * ((gBpp / 8) * (FONT_WIDTH + 1));
Pixels = (void *)FixedPcdGet32(PcdMipiFrameBufferAddress);
Pixels += m_Position.y * ((gBpp / 8) * FONT_HEIGHT * gWidth);
Pixels += m_Position.x * scale_factor * ((gBpp / 8) * (FONT_WIDTH + 1));
FbConDrawglyph(
Pixels,
gWidth,
(gBpp / 8),
font5x12 + (c - 32) * 2,
scale_factor);
FbConDrawglyph(
Pixels, gWidth, (gBpp / 8), font5x12 + (c - 32) * 2, scale_factor);
m_Position.x++;
m_Position.x++;
if (m_Position.x >= (int)(m_MaxPosition.x / scale_factor)) goto newline;
if (m_Position.x >= (int)(m_MaxPosition.x / scale_factor))
goto newline;
if (intstate) ArmEnableInterrupts();
return;
if (intstate)
ArmEnableInterrupts();
return;
newline:
m_Position.y += scale_factor;
m_Position.x = 0;
if (m_Position.y >= m_MaxPosition.y - scale_factor)
{
ResetFb();
FbConFlush();
m_Position.y = 0;
if (intstate) ArmEnableInterrupts();
goto paint;
}
else
{
FbConFlush();
if (intstate) ArmEnableInterrupts();
}
m_Position.y += scale_factor;
m_Position.x = 0;
if (m_Position.y >= m_MaxPosition.y - scale_factor) {
ResetFb();
FbConFlush();
m_Position.y = 0;
if (intstate)
ArmEnableInterrupts();
goto paint;
}
else {
FbConFlush();
if (intstate)
ArmEnableInterrupts();
}
}
void FbConDrawglyph
(
char *pixels,
unsigned stride,
unsigned bpp,
unsigned *glyph,
unsigned scale_factor
)
void FbConDrawglyph(
char *pixels, unsigned stride, unsigned bpp, unsigned *glyph,
unsigned scale_factor)
{
char *bg_pixels = pixels;
unsigned x, y, i, j, k;
unsigned data, temp;
unsigned int fg_color = m_Color.Foreground;
unsigned int bg_color = m_Color.Background;
stride -= FONT_WIDTH * scale_factor;
char * bg_pixels = pixels;
unsigned x, y, i, j, k;
unsigned data, temp;
unsigned int fg_color = m_Color.Foreground;
unsigned int bg_color = m_Color.Background;
stride -= FONT_WIDTH * scale_factor;
for (y = 0; y < FONT_HEIGHT / 2; ++y)
{
for (i = 0; i < scale_factor; i++)
{
for (x = 0; x < FONT_WIDTH; ++x)
{
for (j = 0; j < scale_factor; j++)
{
bg_color = m_Color.Background;
for (k = 0; k < bpp; k++)
{
*bg_pixels = (unsigned char)bg_color;
bg_color = bg_color >> 8;
bg_pixels++;
}
}
}
bg_pixels += (stride * bpp);
}
}
for (y = 0; y < FONT_HEIGHT / 2; ++y) {
for (i = 0; i < scale_factor; i++) {
for (x = 0; x < FONT_WIDTH; ++x) {
for (j = 0; j < scale_factor; j++) {
bg_color = m_Color.Background;
for (k = 0; k < bpp; k++) {
*bg_pixels = (unsigned char)bg_color;
bg_color = bg_color >> 8;
bg_pixels++;
}
}
}
bg_pixels += (stride * bpp);
}
}
for (y = 0; y < FONT_HEIGHT / 2; ++y)
{
for (i = 0; i < scale_factor; i++)
{
for (x = 0; x < FONT_WIDTH; ++x)
{
for (j = 0; j < scale_factor; j++)
{
bg_color = m_Color.Background;
for (k = 0; k < bpp; k++)
{
*bg_pixels = (unsigned char)bg_color;
bg_color = bg_color >> 8;
bg_pixels++;
}
}
}
bg_pixels += (stride * bpp);
}
}
for (y = 0; y < FONT_HEIGHT / 2; ++y) {
for (i = 0; i < scale_factor; i++) {
for (x = 0; x < FONT_WIDTH; ++x) {
for (j = 0; j < scale_factor; j++) {
bg_color = m_Color.Background;
for (k = 0; k < bpp; k++) {
*bg_pixels = (unsigned char)bg_color;
bg_color = bg_color >> 8;
bg_pixels++;
}
}
}
bg_pixels += (stride * bpp);
}
}
data = glyph[0];
for (y = 0; y < FONT_HEIGHT / 2; ++y)
{
temp = data;
for (i = 0; i < scale_factor; i++)
{
data = temp;
for (x = 0; x < FONT_WIDTH; ++x)
{
if (data & 1)
{
for (j = 0; j < scale_factor; j++)
{
fg_color = m_Color.Foreground;
for (k = 0; k < bpp; k++)
{
*pixels = (unsigned char)fg_color;
fg_color = fg_color >> 8;
pixels++;
}
}
}
else
{
for (j = 0; j < scale_factor; j++)
{
pixels = pixels + bpp;
}
}
data >>= 1;
}
pixels += (stride * bpp);
}
}
data = glyph[0];
for (y = 0; y < FONT_HEIGHT / 2; ++y) {
temp = data;
for (i = 0; i < scale_factor; i++) {
data = temp;
for (x = 0; x < FONT_WIDTH; ++x) {
if (data & 1) {
for (j = 0; j < scale_factor; j++) {
fg_color = m_Color.Foreground;
for (k = 0; k < bpp; k++) {
*pixels = (unsigned char)fg_color;
fg_color = fg_color >> 8;
pixels++;
}
}
}
else {
for (j = 0; j < scale_factor; j++) {
pixels = pixels + bpp;
}
}
data >>= 1;
}
pixels += (stride * bpp);
}
}
data = glyph[1];
for (y = 0; y < FONT_HEIGHT / 2; ++y)
{
temp = data;
for (i = 0; i < scale_factor; i++)
{
data = temp;
for (x = 0; x < FONT_WIDTH; ++x)
{
if (data & 1)
{
for (j = 0; j < scale_factor; j++)
{
fg_color = m_Color.Foreground;
for (k = 0; k < bpp; k++)
{
*pixels = (unsigned char)fg_color;
fg_color = fg_color >> 8;
pixels++;
}
}
}
else
{
for (j = 0; j < scale_factor; j++)
{
pixels = pixels + bpp;
}
}
data >>= 1;
}
pixels += (stride * bpp);
}
}
data = glyph[1];
for (y = 0; y < FONT_HEIGHT / 2; ++y) {
temp = data;
for (i = 0; i < scale_factor; i++) {
data = temp;
for (x = 0; x < FONT_WIDTH; ++x) {
if (data & 1) {
for (j = 0; j < scale_factor; j++) {
fg_color = m_Color.Foreground;
for (k = 0; k < bpp; k++) {
*pixels = (unsigned char)fg_color;
fg_color = fg_color >> 8;
pixels++;
}
}
}
else {
for (j = 0; j < scale_factor; j++) {
pixels = pixels + bpp;
}
}
data >>= 1;
}
pixels += (stride * bpp);
}
}
}
/* TODO: Take stride into account */
void FbConScrollUp(void)
{
unsigned short *dst = (void*)FixedPcdGet32(PcdMipiFrameBufferAddress);
unsigned short *src = dst + (gWidth * FONT_HEIGHT);
unsigned count = gWidth * (gHeight - FONT_HEIGHT);
unsigned short *dst = (void *)FixedPcdGet32(PcdMipiFrameBufferAddress);
unsigned short *src = dst + (gWidth * FONT_HEIGHT);
unsigned count = gWidth * (gHeight - FONT_HEIGHT);
while (count--)
{
*dst++ = *src++;
}
while (count--) {
*dst++ = *src++;
}
count = gWidth * FONT_HEIGHT;
while (count--)
{
*dst++ = m_Color.Background;
}
count = gWidth * FONT_HEIGHT;
while (count--) {
*dst++ = m_Color.Background;
}
FbConFlush();
FbConFlush();
}
void FbConFlush(void)
{
unsigned total_x, total_y;
unsigned bytes_per_bpp;
unsigned total_x, total_y;
unsigned bytes_per_bpp;
total_x = gWidth;
total_y = gHeight;
bytes_per_bpp = (gBpp / 8);
total_x = gWidth;
total_y = gHeight;
bytes_per_bpp = (gBpp / 8);
WriteBackInvalidateDataCacheRange(
(void*)FixedPcdGet32(PcdMipiFrameBufferAddress),
(total_x * total_y * bytes_per_bpp)
);
WriteBackInvalidateDataCacheRange(
(void *)FixedPcdGet32(PcdMipiFrameBufferAddress),
(total_x * total_y * bytes_per_bpp));
}
UINTN
EFIAPI
SerialPortWrite
(
IN UINT8 *Buffer,
IN UINTN NumberOfBytes
)
SerialPortWrite(IN UINT8 *Buffer, IN UINTN NumberOfBytes)
{
UINT8* CONST Final = &Buffer[NumberOfBytes];
UINTN InterruptState = ArmGetInterruptState();
ArmDisableInterrupts();
UINT8 *CONST Final = &Buffer[NumberOfBytes];
UINTN InterruptState = ArmGetInterruptState();
ArmDisableInterrupts();
while (Buffer < Final)
{
FbConPutCharWithFactor(*Buffer++, FBCON_COMMON_MSG, SCALE_FACTOR);
}
while (Buffer < Final) {
FbConPutCharWithFactor(*Buffer++, FBCON_COMMON_MSG, SCALE_FACTOR);
}
if (InterruptState) ArmEnableInterrupts();
return NumberOfBytes;
if (InterruptState)
ArmEnableInterrupts();
return NumberOfBytes;
}
UINTN
EFIAPI
SerialPortWriteCritical
(
IN UINT8 *Buffer,
IN UINTN NumberOfBytes
)
SerialPortWriteCritical(IN UINT8 *Buffer, IN UINTN NumberOfBytes)
{
UINT8* CONST Final = &Buffer[NumberOfBytes];
UINTN CurrentForeground = m_Color.Foreground;
UINTN InterruptState = ArmGetInterruptState();
UINT8 *CONST Final = &Buffer[NumberOfBytes];
UINTN CurrentForeground = m_Color.Foreground;
UINTN InterruptState = ArmGetInterruptState();
ArmDisableInterrupts();
m_Color.Foreground = FB_BGRA8888_YELLOW;
ArmDisableInterrupts();
m_Color.Foreground = FB_BGRA8888_YELLOW;
while (Buffer < Final)
{
FbConPutCharWithFactor(*Buffer++, FBCON_COMMON_MSG, SCALE_FACTOR);
}
while (Buffer < Final) {
FbConPutCharWithFactor(*Buffer++, FBCON_COMMON_MSG, SCALE_FACTOR);
}
m_Color.Foreground = CurrentForeground;
m_Color.Foreground = CurrentForeground;
if (InterruptState) ArmEnableInterrupts();
return NumberOfBytes;
if (InterruptState)
ArmEnableInterrupts();
return NumberOfBytes;
}
UINTN
EFIAPI
SerialPortRead
(
OUT UINT8 *Buffer,
IN UINTN NumberOfBytes
)
{
return 0;
}
SerialPortRead(OUT UINT8 *Buffer, IN UINTN NumberOfBytes) { return 0; }
BOOLEAN
EFIAPI
SerialPortPoll
(
VOID
)
{
return FALSE;
}
SerialPortPoll(VOID) { return FALSE; }
RETURN_STATUS
EFIAPI
SerialPortSetControl
(
IN UINT32 Control
)
{
return RETURN_UNSUPPORTED;
}
SerialPortSetControl(IN UINT32 Control) { return RETURN_UNSUPPORTED; }
RETURN_STATUS
EFIAPI
SerialPortGetControl
(
OUT UINT32 *Control
)
{
return RETURN_UNSUPPORTED;
}
SerialPortGetControl(OUT UINT32 *Control) { return RETURN_UNSUPPORTED; }
RETURN_STATUS
EFIAPI
SerialPortSetAttributes
(
IN OUT UINT64 *BaudRate,
IN OUT UINT32 *ReceiveFifoDepth,
IN OUT UINT32 *Timeout,
IN OUT EFI_PARITY_TYPE *Parity,
IN OUT UINT8 *DataBits,
IN OUT EFI_STOP_BITS_TYPE *StopBits
)
SerialPortSetAttributes(
IN OUT UINT64 *BaudRate, IN OUT UINT32 *ReceiveFifoDepth,
IN OUT UINT32 *Timeout, IN OUT EFI_PARITY_TYPE *Parity,
IN OUT UINT8 *DataBits, IN OUT EFI_STOP_BITS_TYPE *StopBits)
{
return RETURN_UNSUPPORTED;
return RETURN_UNSUPPORTED;
}
UINTN SerialPortFlush(VOID)
{
return 0;
}
UINTN SerialPortFlush(VOID) { return 0; }
VOID
EnableSynchronousSerialPortIO(VOID)
VOID EnableSynchronousSerialPortIO(VOID)
{
// Already synchronous
// Already synchronous
}

View File

@ -2,40 +2,36 @@
#define _FRAMEBUFFER_SERIALPORT_LIB_H_
typedef struct _FBCON_POSITION {
INTN x;
INTN y;
INTN x;
INTN y;
} FBCON_POSITION, *PFBCON_POSITION;
typedef struct _FBCON_COLOR {
UINTN Foreground;
UINTN Background;
UINTN Foreground;
UINTN Background;
} FBCON_COLOR, *PFBCON_COLOR;
enum FbConMsgType {
/* type for menu */
FBCON_COMMON_MSG = 0,
FBCON_UNLOCK_TITLE_MSG,
FBCON_TITLE_MSG,
FBCON_SUBTITLE_MSG,
/* type for menu */
FBCON_COMMON_MSG = 0,
FBCON_UNLOCK_TITLE_MSG,
FBCON_TITLE_MSG,
FBCON_SUBTITLE_MSG,
/* type for warning */
FBCON_YELLOW_MSG,
FBCON_ORANGE_MSG,
FBCON_RED_MSG,
FBCON_GREEN_MSG,
/* type for warning */
FBCON_YELLOW_MSG,
FBCON_ORANGE_MSG,
FBCON_RED_MSG,
FBCON_GREEN_MSG,
/* and the select message's background */
FBCON_SELECT_MSG_BG_COLOR,
/* and the select message's background */
FBCON_SELECT_MSG_BG_COLOR,
};
void ResetFb(void);
UINTN
EFIAPI
SerialPortWriteCritical
(
IN UINT8 *Buffer,
IN UINTN NumberOfBytes
);
SerialPortWriteCritical(IN UINT8 *Buffer, IN UINTN NumberOfBytes);
#endif

View File

@ -3,26 +3,26 @@
Copyright (c) 2006 - 2018, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php.
are licensed and made available under the terms and conditions of the BSD
License which accompanies this distribution. The full text of the license may
be found at http://opensource.org/licenses/bsd-license.php.
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include <Base.h>
#include <Library/SerialPortLib.h>
#include <Library/CacheMaintenanceLib.h>
#include <Library/SerialPortLib.h>
/**
Initialize the serial device hardware.
If no initialization is required, then return RETURN_SUCCESS.
If the serial device was successfully initialized, then return RETURN_SUCCESS.
If the serial device could not be initialized, then return RETURN_DEVICE_ERROR.
If the serial device could not be initialized, then return
RETURN_DEVICE_ERROR.
@retval RETURN_SUCCESS The serial device was initialized.
@retval RETURN_DEVICE_ERROR The serial device could not be initialized.
@ -30,9 +30,7 @@
**/
RETURN_STATUS
EFIAPI
SerialPortInitialize (
VOID
)
SerialPortInitialize(VOID)
{
#if 0
UINT8* base = (UINT8*)0xa1a10000ull;
@ -43,11 +41,12 @@ SerialPortInitialize (
return RETURN_SUCCESS;
}
static void mem_putchar(UINT8 c) {
static const UINTN size = 0x200000;
static UINTN offset = 0;
UINT8* base = (UINT8*)0xa1a10000ull;
base[offset++] = c;
static void mem_putchar(UINT8 c)
{
static const UINTN size = 0x200000;
static UINTN offset = 0;
UINT8 * base = (UINT8 *)0xa1a10000ull;
base[offset++] = c;
if (offset >= size) {
offset = 0;
}
@ -59,24 +58,22 @@ static void mem_putchar(UINT8 c) {
Writes NumberOfBytes data bytes from Buffer to the serial device.
The number of bytes actually written to the serial device is returned.
If the return value is less than NumberOfBytes, then the write operation failed.
If Buffer is NULL, then ASSERT().
If NumberOfBytes is zero, then return 0.
If the return value is less than NumberOfBytes, then the write operation
failed. If Buffer is NULL, then ASSERT(). If NumberOfBytes is zero, then return
0.
@param Buffer The pointer to the data buffer to be written.
@param NumberOfBytes The number of bytes to written to the serial device.
@retval 0 NumberOfBytes is 0.
@retval >0 The number of bytes written to the serial device.
If this value is less than NumberOfBytes, then the write operation failed.
If this value is less than NumberOfBytes, then the
write operation failed.
**/
UINTN
EFIAPI
SerialPortWrite (
IN UINT8 *Buffer,
IN UINTN NumberOfBytes
)
SerialPortWrite(IN UINT8 *Buffer, IN UINTN NumberOfBytes)
{
for (UINTN i = 0; i < NumberOfBytes; i++) {
mem_putchar(Buffer[i]);
@ -84,17 +81,17 @@ SerialPortWrite (
return NumberOfBytes;
}
/**
Read data from serial device and save the datas in buffer.
Reads NumberOfBytes data bytes from a serial device into the buffer
specified by Buffer. The number of bytes actually read is returned.
If the return value is less than NumberOfBytes, then the rest operation failed.
If Buffer is NULL, then ASSERT().
If NumberOfBytes is zero, then return 0.
If the return value is less than NumberOfBytes, then the rest operation
failed. If Buffer is NULL, then ASSERT(). If NumberOfBytes is zero, then return
0.
@param Buffer The pointer to the data buffer to store the data read from the serial device.
@param Buffer The pointer to the data buffer to store the data read
from the serial device.
@param NumberOfBytes The number of bytes which will be read.
@retval 0 Read data failed; No data is to be read.
@ -103,116 +100,97 @@ SerialPortWrite (
**/
UINTN
EFIAPI
SerialPortRead (
OUT UINT8 *Buffer,
IN UINTN NumberOfBytes
)
{
return 0;
}
SerialPortRead(OUT UINT8 *Buffer, IN UINTN NumberOfBytes) { return 0; }
/**
Polls a serial device to see if there is any data waiting to be read.
Polls a serial device to see if there is any data waiting to be read.
If there is data waiting to be read from the serial device, then TRUE is returned.
If there is no data waiting to be read from the serial device, then FALSE is returned.
If there is data waiting to be read from the serial device, then TRUE is
returned. If there is no data waiting to be read from the serial device, then
FALSE is returned.
@retval TRUE Data is waiting to be read from the serial device.
@retval FALSE There is no data waiting to be read from the serial device.
@retval FALSE There is no data waiting to be read from the serial
device.
**/
BOOLEAN
EFIAPI
SerialPortPoll (
VOID
)
{
return FALSE;
}
SerialPortPoll(VOID) { return FALSE; }
/**
Sets the control bits on a serial device.
@param Control Sets the bits of Control that are settable.
@retval RETURN_SUCCESS The new control bits were set on the serial device.
@retval RETURN_UNSUPPORTED The serial device does not support this operation.
@retval RETURN_SUCCESS The new control bits were set on the serial
device.
@retval RETURN_UNSUPPORTED The serial device does not support this
operation.
@retval RETURN_DEVICE_ERROR The serial device is not functioning correctly.
**/
RETURN_STATUS
EFIAPI
SerialPortSetControl (
IN UINT32 Control
)
{
return RETURN_UNSUPPORTED;
}
SerialPortSetControl(IN UINT32 Control) { return RETURN_UNSUPPORTED; }
/**
Retrieve the status of the control bits on a serial device.
@param Control A pointer to return the current control signals from the serial device.
@param Control A pointer to return the current control signals
from the serial device.
@retval RETURN_SUCCESS The control bits were read from the serial device.
@retval RETURN_UNSUPPORTED The serial device does not support this operation.
@retval RETURN_SUCCESS The control bits were read from the serial
device.
@retval RETURN_UNSUPPORTED The serial device does not support this
operation.
@retval RETURN_DEVICE_ERROR The serial device is not functioning correctly.
**/
RETURN_STATUS
EFIAPI
SerialPortGetControl (
OUT UINT32 *Control
)
{
return RETURN_UNSUPPORTED;
}
SerialPortGetControl(OUT UINT32 *Control) { return RETURN_UNSUPPORTED; }
/**
Sets the baud rate, receive FIFO depth, transmit/receice time out, parity,
data bits, and stop bits on a serial device.
@param BaudRate The requested baud rate. A BaudRate value of 0 will use the
device's default interface speed.
On output, the value actually set.
@param ReveiveFifoDepth The requested depth of the FIFO on the receive side of the
serial interface. A ReceiveFifoDepth value of 0 will use
the device's default FIFO depth.
On output, the value actually set.
@param Timeout The requested time out for a single character in microseconds.
This timeout applies to both the transmit and receive side of the
interface. A Timeout value of 0 will use the device's default time
out value.
On output, the value actually set.
@param Parity The type of parity to use on this serial device. A Parity value of
DefaultParity will use the device's default parity value.
On output, the value actually set.
@param DataBits The number of data bits to use on the serial device. A DataBits
vaule of 0 will use the device's default data bit setting.
On output, the value actually set.
@param StopBits The number of stop bits to use on this serial device. A StopBits
value of DefaultStopBits will use the device's default number of
stop bits.
On output, the value actually set.
@param BaudRate The requested baud rate. A BaudRate value of 0 will
use the device's default interface speed. On output, the value actually set.
@param ReveiveFifoDepth The requested depth of the FIFO on the receive side
of the serial interface. A ReceiveFifoDepth value of 0 will use the device's
default FIFO depth. On output, the value actually set.
@param Timeout The requested time out for a single character in
microseconds. This timeout applies to both the transmit and receive side of the
interface. A Timeout value of 0 will use the
device's default time out value. On output, the value actually set.
@param Parity The type of parity to use on this serial device. A
Parity value of DefaultParity will use the device's default parity value. On
output, the value actually set.
@param DataBits The number of data bits to use on the serial device.
A DataBits vaule of 0 will use the device's default data bit setting. On output,
the value actually set.
@param StopBits The number of stop bits to use on this serial
device. A StopBits value of DefaultStopBits will use the device's default number
of stop bits. On output, the value actually set.
@retval RETURN_SUCCESS The new attributes were set on the serial device.
@retval RETURN_UNSUPPORTED The serial device does not support this operation.
@retval RETURN_INVALID_PARAMETER One or more of the attributes has an unsupported value.
@retval RETURN_DEVICE_ERROR The serial device is not functioning correctly.
@retval RETURN_SUCCESS The new attributes were set on the serial
device.
@retval RETURN_UNSUPPORTED The serial device does not support this
operation.
@retval RETURN_INVALID_PARAMETER One or more of the attributes has an
unsupported value.
@retval RETURN_DEVICE_ERROR The serial device is not functioning
correctly.
**/
RETURN_STATUS
EFIAPI
SerialPortSetAttributes (
IN OUT UINT64 *BaudRate,
IN OUT UINT32 *ReceiveFifoDepth,
IN OUT UINT32 *Timeout,
IN OUT EFI_PARITY_TYPE *Parity,
IN OUT UINT8 *DataBits,
IN OUT EFI_STOP_BITS_TYPE *StopBits
)
SerialPortSetAttributes(
IN OUT UINT64 *BaudRate, IN OUT UINT32 *ReceiveFifoDepth,
IN OUT UINT32 *Timeout, IN OUT EFI_PARITY_TYPE *Parity,
IN OUT UINT8 *DataBits, IN OUT EFI_STOP_BITS_TYPE *StopBits)
{
return RETURN_UNSUPPORTED;
}

View File

@ -82,7 +82,7 @@ MemoryPeim(IN EFI_PHYSICAL_ADDRESS UefiMemoryBase, IN UINT64 UefiMemorySize)
PARM_MEMORY_REGION_DESCRIPTOR_EX MemoryDescriptorEx =
gDeviceMemoryDescriptorEx;
ARM_MEMORY_REGION_DESCRIPTOR
MemoryDescriptor[MAX_ARM_MEMORY_REGION_DESCRIPTOR_COUNT];
MemoryDescriptor[MAX_ARM_MEMORY_REGION_DESCRIPTOR_COUNT];
UINTN Index = 0;
// Ensure PcdSystemMemorySize has been set

File diff suppressed because it is too large Load Diff

View File

@ -41,9 +41,7 @@
@retval EFI_UNSUPPORTED Logo not found
**/
EFI_STATUS
EnableQuietBoot (
IN EFI_GUID *LogoFile
);
EnableQuietBoot(IN EFI_GUID *LogoFile);
/**
Use SystemTable Conout to turn on video based Simple Text Out consoles. The
@ -53,8 +51,6 @@ EnableQuietBoot (
@retval EFI_SUCCESS UGA devices are back in text mode and synced up.
**/
EFI_STATUS
DisableQuietBoot (
VOID
);
DisableQuietBoot(VOID);
#endif // _PLATFORM_BM_H_

View File

@ -1,16 +1,17 @@
/** @file
*
* Copyright (c) 2018, Linaro Limited. All rights reserved.
*
* This program and the accompanying materials
* are licensed and made available under the terms and conditions of the BSD License
* which accompanies this distribution. The full text of the license may be found at
* http://opensource.org/licenses/bsd-license.php
*
* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
*
**/
*
* Copyright (c) 2018, Linaro Limited. All rights reserved.
*
* This program and the accompanying materials
* are licensed and made available under the terms and conditions of the BSD
*License which accompanies this distribution. The full text of the license may
*be found at http://opensource.org/licenses/bsd-license.php
*
* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR
*IMPLIED.
*
**/
#include <Library/ArmPlatformLib.h>
#include <Library/DebugLib.h>
@ -20,64 +21,62 @@
#include <Ppi/ArmMpCoreInfo.h>
ARM_CORE_INFO mHiKey960InfoTable[] = {
{
// Cluster 0, Core 0
0x0, 0x0,
{// Cluster 0, Core 0
0x0, 0x0,
// MP Core MailBox Set/Get/Clear Addresses and Clear Value
(UINT64)0xFFFFFFFF
},
/*
{
// Cluster 0, Core 1
0x0, 0x1,
// MP Core MailBox Set/Get/Clear Addresses and Clear Value
(UINT64)0xFFFFFFFF},
/*
{
// Cluster 0, Core 1
0x0, 0x1,
// MP Core MailBox Set/Get/Clear Addresses and Clear Value
(UINT64)0xFFFFFFFF
},
{
// Cluster 0, Core 2
0x0, 0x2,
// MP Core MailBox Set/Get/Clear Addresses and Clear Value
(UINT64)0xFFFFFFFF
},
{
// Cluster 0, Core 2
0x0, 0x2,
// MP Core MailBox Set/Get/Clear Addresses and Clear Value
(UINT64)0xFFFFFFFF
},
{
// Cluster 0, Core 3
0x0, 0x3,
// MP Core MailBox Set/Get/Clear Addresses and Clear Value
(UINT64)0xFFFFFFFF
},
{
// Cluster 0, Core 3
0x0, 0x3,
// MP Core MailBox Set/Get/Clear Addresses and Clear Value
(UINT64)0xFFFFFFFF
},
{
// Cluster 1, Core 0
0x1, 0x0,
// MP Core MailBox Set/Get/Clear Addresses and Clear Value
(UINT64)0xFFFFFFFF
},
{
// Cluster 1, Core 0
0x1, 0x0,
// MP Core MailBox Set/Get/Clear Addresses and Clear Value
(UINT64)0xFFFFFFFF
},
{
// Cluster 1, Core 1
0x1, 0x1,
// MP Core MailBox Set/Get/Clear Addresses and Clear Value
(UINT64)0xFFFFFFFF
},
{
// Cluster 1, Core 1
0x1, 0x1,
// MP Core MailBox Set/Get/Clear Addresses and Clear Value
(UINT64)0xFFFFFFFF
},
{
// Cluster 1, Core 2
0x1, 0x2,
// MP Core MailBox Set/Get/Clear Addresses and Clear Value
(UINT64)0xFFFFFFFF
},
{
// Cluster 1, Core 2
0x1, 0x2,
// MP Core MailBox Set/Get/Clear Addresses and Clear Value
(UINT64)0xFFFFFFFF
},
{
// Cluster 1, Core 3
0x1, 0x3,
// MP Core MailBox Set/Get/Clear Addresses and Clear Value
(UINT64)0xFFFFFFFF
},
{
// Cluster 1, Core 3
0x1, 0x3,
// MP Core MailBox Set/Get/Clear Addresses and Clear Value
(UINT64)0xFFFFFFFF
}
*/
// MP Core MailBox Set/Get/Clear Addresses and Clear Value
(UINT64)0xFFFFFFFF
}
*/
};
/**
@ -89,33 +88,20 @@ ARM_CORE_INFO mHiKey960InfoTable[] = {
**/
EFI_BOOT_MODE
ArmPlatformGetBootMode (
VOID
)
{
return BOOT_WITH_FULL_CONFIGURATION;
}
ArmPlatformGetBootMode(VOID) { return BOOT_WITH_FULL_CONFIGURATION; }
/**
Initialize controllers that must setup in the normal world
This function is called by the ArmPlatformPkg/Pei or ArmPlatformPkg/Pei/PlatformPeim
in the PEI phase.
This function is called by the ArmPlatformPkg/Pei or
ArmPlatformPkg/Pei/PlatformPeim in the PEI phase.
**/
RETURN_STATUS
ArmPlatformInitialize (
IN UINTN MpId
)
{
return RETURN_SUCCESS;
}
ArmPlatformInitialize(IN UINTN MpId) { return RETURN_SUCCESS; }
EFI_STATUS
PrePeiCoreGetMpCoreInfo (
OUT UINTN *CoreCount,
OUT ARM_CORE_INFO **ArmCoreTable
)
PrePeiCoreGetMpCoreInfo(OUT UINTN *CoreCount, OUT ARM_CORE_INFO **ArmCoreTable)
{
// Only support one cluster
*CoreCount = sizeof(mHiKey960InfoTable) / sizeof(ARM_CORE_INFO);
@ -123,24 +109,17 @@ PrePeiCoreGetMpCoreInfo (
return EFI_SUCCESS;
}
// Needs to be declared in the file. Otherwise gArmMpCoreInfoPpiGuid is undefined in the contect of PrePeiCore
EFI_GUID mArmMpCoreInfoPpiGuid = ARM_MP_CORE_INFO_PPI_GUID;
ARM_MP_CORE_INFO_PPI mMpCoreInfoPpi = { PrePeiCoreGetMpCoreInfo };
// Needs to be declared in the file. Otherwise gArmMpCoreInfoPpiGuid is
// undefined in the contect of PrePeiCore
EFI_GUID mArmMpCoreInfoPpiGuid = ARM_MP_CORE_INFO_PPI_GUID;
ARM_MP_CORE_INFO_PPI mMpCoreInfoPpi = {PrePeiCoreGetMpCoreInfo};
EFI_PEI_PPI_DESCRIPTOR gPlatformPpiTable[] = {
{
EFI_PEI_PPI_DESCRIPTOR_PPI,
&mArmMpCoreInfoPpiGuid,
&mMpCoreInfoPpi
}
};
EFI_PEI_PPI_DESCRIPTOR gPlatformPpiTable[] = {
{EFI_PEI_PPI_DESCRIPTOR_PPI, &mArmMpCoreInfoPpiGuid, &mMpCoreInfoPpi}};
VOID
ArmPlatformGetPlatformPpiList (
OUT UINTN *PpiListSize,
OUT EFI_PEI_PPI_DESCRIPTOR **PpiList
)
VOID ArmPlatformGetPlatformPpiList(
OUT UINTN *PpiListSize, OUT EFI_PEI_PPI_DESCRIPTOR **PpiList)
{
*PpiListSize = sizeof(gPlatformPpiTable);
*PpiList = gPlatformPpiTable;
*PpiList = gPlatformPpiTable;
}

View File

@ -1,97 +1,88 @@
/** @file
*
* Copyright (c) 2011, ARM Limited. All rights reserved.
* Copyright (c) 2019, RUIKAI LIU and MR TUNNEL. All rights reserved.
*
* This program and the accompanying materials
* are licensed and made available under the terms and conditions of the BSD License
* which accompanies this distribution. The full text of the license may be found at
* http://opensource.org/licenses/bsd-license.php
*
* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
*
**/
*
* Copyright (c) 2011, ARM Limited. All rights reserved.
* Copyright (c) 2019, RUIKAI LIU and MR TUNNEL. All rights reserved.
*
* This program and the accompanying materials
* are licensed and made available under the terms and conditions of the BSD
*License which accompanies this distribution. The full text of the license may
*be found at http://opensource.org/licenses/bsd-license.php
*
* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR
*IMPLIED.
*
**/
#include <Configuration/DeviceMemoryMap.h>
#include <Library/ArmPlatformLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/DebugLib.h>
#include <Library/HobLib.h>
#include <Configuration/DeviceMemoryMap.h>
#include <Library/MemoryAllocationLib.h>
/**
Return the Virtual Memory Map of your platform
This Virtual Memory Map is used by MemoryInitPei Module to initialize the MMU on your platform.
@param[out] VirtualMemoryMap Array of ARM_MEMORY_REGION_DESCRIPTOR describing a Physical-to-
Virtual Memory mapping. This array must be ended by a zero-filled
entry
This Virtual Memory Map is used by MemoryInitPei Module to initialize the MMU
on your platform.
@param[out] VirtualMemoryMap Array of ARM_MEMORY_REGION_DESCRIPTOR
describing a Physical-to- Virtual Memory mapping. This array must be ended by a
zero-filled entry
**/
STATIC
VOID
AddHob
(
ARM_MEMORY_REGION_DESCRIPTOR_EX Desc
)
VOID AddHob(ARM_MEMORY_REGION_DESCRIPTOR_EX Desc)
{
BuildResourceDescriptorHob(
Desc.ResourceType,
Desc.ResourceAttribute,
Desc.Address,
Desc.Length
);
BuildResourceDescriptorHob(
Desc.ResourceType, Desc.ResourceAttribute, Desc.Address, Desc.Length);
BuildMemoryAllocationHob(
Desc.Address,
Desc.Length,
Desc.MemoryType
);
BuildMemoryAllocationHob(Desc.Address, Desc.Length, Desc.MemoryType);
}
VOID
ArmPlatformGetVirtualMemoryMap (
IN ARM_MEMORY_REGION_DESCRIPTOR** VirtualMemoryMap
)
VOID ArmPlatformGetVirtualMemoryMap(
IN ARM_MEMORY_REGION_DESCRIPTOR **VirtualMemoryMap)
{
//TO-DO:ADD MEMORY MAP HERE
ARM_MEMORY_REGION_DESCRIPTOR* MemoryDescriptor;
UINTN Index = 0;
// TO-DO:ADD MEMORY MAP HERE
ARM_MEMORY_REGION_DESCRIPTOR *MemoryDescriptor;
UINTN Index = 0;
MemoryDescriptor = (ARM_MEMORY_REGION_DESCRIPTOR*)AllocatePages
(EFI_SIZE_TO_PAGES (sizeof (ARM_MEMORY_REGION_DESCRIPTOR) *
MAX_ARM_MEMORY_REGION_DESCRIPTOR_COUNT));
MemoryDescriptor =
(ARM_MEMORY_REGION_DESCRIPTOR *)AllocatePages(EFI_SIZE_TO_PAGES(
sizeof(ARM_MEMORY_REGION_DESCRIPTOR) *
MAX_ARM_MEMORY_REGION_DESCRIPTOR_COUNT));
// Run through each memory descriptor
while (gDeviceMemoryDescriptorEx[Index].Address != (EFI_PHYSICAL_ADDRESS)0xFFFFFFFF)
{
switch (gDeviceMemoryDescriptorEx[Index].HobOption)
{
case AddMem:
case AddDev:
AddHob(gDeviceMemoryDescriptorEx[Index]);
break;
case NoHob:
default:
goto update;
}
update:
ASSERT(Index < MAX_ARM_MEMORY_REGION_DESCRIPTOR_COUNT);
MemoryDescriptor[Index].PhysicalBase = gDeviceMemoryDescriptorEx[Index].Address;
MemoryDescriptor[Index].VirtualBase = gDeviceMemoryDescriptorEx[Index].Address;
MemoryDescriptor[Index].Length = gDeviceMemoryDescriptorEx[Index].Length;
MemoryDescriptor[Index].Attributes = gDeviceMemoryDescriptorEx[Index].ArmAttributes;
Index++;
// Run through each memory descriptor
while (gDeviceMemoryDescriptorEx[Index].Address !=
(EFI_PHYSICAL_ADDRESS)0xFFFFFFFF) {
switch (gDeviceMemoryDescriptorEx[Index].HobOption) {
case AddMem:
case AddDev:
AddHob(gDeviceMemoryDescriptorEx[Index]);
break;
case NoHob:
default:
goto update;
}
// Last one (terminator)
MemoryDescriptor[Index].PhysicalBase = 0;
MemoryDescriptor[Index].VirtualBase = 0;
MemoryDescriptor[Index].Length = 0;
MemoryDescriptor[Index++].Attributes = (ARM_MEMORY_REGION_ATTRIBUTES)0;
ASSERT(Index <= MAX_ARM_MEMORY_REGION_DESCRIPTOR_COUNT);
update:
ASSERT(Index < MAX_ARM_MEMORY_REGION_DESCRIPTOR_COUNT);
*VirtualMemoryMap = &MemoryDescriptor[0];
//ASSERT(0);
MemoryDescriptor[Index].PhysicalBase =
gDeviceMemoryDescriptorEx[Index].Address;
MemoryDescriptor[Index].VirtualBase =
gDeviceMemoryDescriptorEx[Index].Address;
MemoryDescriptor[Index].Length = gDeviceMemoryDescriptorEx[Index].Length;
MemoryDescriptor[Index].Attributes =
gDeviceMemoryDescriptorEx[Index].ArmAttributes;
Index++;
}
// Last one (terminator)
MemoryDescriptor[Index].PhysicalBase = 0;
MemoryDescriptor[Index].VirtualBase = 0;
MemoryDescriptor[Index].Length = 0;
MemoryDescriptor[Index++].Attributes = (ARM_MEMORY_REGION_ATTRIBUTES)0;
ASSERT(Index <= MAX_ARM_MEMORY_REGION_DESCRIPTOR_COUNT);
*VirtualMemoryMap = &MemoryDescriptor[0];
// ASSERT(0);
}